
Let the vectors \[\overrightarrow a ,\overrightarrow b ,\overrightarrow c \]such that \[\left| {\overrightarrow a } \right| = 2,\left| {\overrightarrow b } \right| = 4\,{\rm{and}}\,\left| {\overrightarrow c } \right| = 4\]. If the projection of vector b on vector a is equal to the projection of vector c on vector a and b is perpendicular to vector c, then find the value of \[\left| {\overrightarrow a + \overrightarrow b - \overrightarrow c } \right|\].
Answer
160.8k+ views
Hint: First establish a relation between a, b and c by the given information, that is the projection of vector b on vector a is equal to the projection of vector c on vector a, then form an equation by the information that, b is perpendicular to the vector c.
Now, calculate and take the square root of both sides to obtain the required value.
Formula used:
The projection formula of vector P on vector Q is \[\dfrac{{\overrightarrow P \cdot \overrightarrow Q }}{{\left| {\overrightarrow Q } \right|}}\].
Complete step by step solution:
It is given that \[\left| {\overrightarrow a } \right| = 2,\left| {\overrightarrow b } \right| = 4\,{\rm{and}}\,\left| {\overrightarrow c } \right| = 4\].
Now, projection of vector b on vector a is \[\dfrac{{\overrightarrow b \cdot \overrightarrow a }}{{\left| {\overrightarrow a } \right|}} = \dfrac{{\overrightarrow b \cdot \overrightarrow a }}{2}\] and projection of vector c on vector a is \[\dfrac{{\overrightarrow c \cdot \overrightarrow a }}{{\left| {\overrightarrow a } \right|}} = \dfrac{{\overrightarrow c \cdot \overrightarrow a }}{2}\].
It is given that \[\dfrac{{\overrightarrow b \cdot \overrightarrow a }}{2} = \dfrac{{\overrightarrow c \cdot \overrightarrow a }}{2}\]
That is, \[\overrightarrow b \cdot \overrightarrow a = \overrightarrow c \cdot \overrightarrow a \]
And as b vector is perpendicular to c vector therefore, \[\overrightarrow b \cdot \overrightarrow c = 0\]
Now,
\[{\left(| { \overrightarrow a + \overrightarrow b - \overrightarrow c}| \right)^2}={|\overrightarrow a|^{2}} + {|\overrightarrow b|^{2}} + {|\overrightarrow c|^{2}} + 2\cdot \overrightarrow a\cdot \overrightarrow b – 2\cdot \overrightarrow b\cdot \overrightarrow c – 2\cdot \overrightarrow c\cdot \overrightarrow a\]
\[ = {2^2} + {4^2} + {4^2} + 2\overrightarrow a \cdot \overrightarrow b - 2 \times 0 - 2\overrightarrow a \cdot \overrightarrow b \]
\[ = 4 + 16 + 16\]
\[ = 36\]
Therefore, \[\left| {\overrightarrow a + \overrightarrow b - \overrightarrow c } \right|\]=6
Hence the required value is 6.
Note: The formula of \[{\left( {a + b - c} \right)^2}\] is \[{a^2} + {b^2} + {c^2} + 2ab - 2bc - 2ca\], sometime students get confused with the formula.
Now, calculate and take the square root of both sides to obtain the required value.
Formula used:
The projection formula of vector P on vector Q is \[\dfrac{{\overrightarrow P \cdot \overrightarrow Q }}{{\left| {\overrightarrow Q } \right|}}\].
Complete step by step solution:
It is given that \[\left| {\overrightarrow a } \right| = 2,\left| {\overrightarrow b } \right| = 4\,{\rm{and}}\,\left| {\overrightarrow c } \right| = 4\].
Now, projection of vector b on vector a is \[\dfrac{{\overrightarrow b \cdot \overrightarrow a }}{{\left| {\overrightarrow a } \right|}} = \dfrac{{\overrightarrow b \cdot \overrightarrow a }}{2}\] and projection of vector c on vector a is \[\dfrac{{\overrightarrow c \cdot \overrightarrow a }}{{\left| {\overrightarrow a } \right|}} = \dfrac{{\overrightarrow c \cdot \overrightarrow a }}{2}\].
It is given that \[\dfrac{{\overrightarrow b \cdot \overrightarrow a }}{2} = \dfrac{{\overrightarrow c \cdot \overrightarrow a }}{2}\]
That is, \[\overrightarrow b \cdot \overrightarrow a = \overrightarrow c \cdot \overrightarrow a \]
And as b vector is perpendicular to c vector therefore, \[\overrightarrow b \cdot \overrightarrow c = 0\]
Now,
\[{\left(| { \overrightarrow a + \overrightarrow b - \overrightarrow c}| \right)^2}={|\overrightarrow a|^{2}} + {|\overrightarrow b|^{2}} + {|\overrightarrow c|^{2}} + 2\cdot \overrightarrow a\cdot \overrightarrow b – 2\cdot \overrightarrow b\cdot \overrightarrow c – 2\cdot \overrightarrow c\cdot \overrightarrow a\]
\[ = {2^2} + {4^2} + {4^2} + 2\overrightarrow a \cdot \overrightarrow b - 2 \times 0 - 2\overrightarrow a \cdot \overrightarrow b \]
\[ = 4 + 16 + 16\]
\[ = 36\]
Therefore, \[\left| {\overrightarrow a + \overrightarrow b - \overrightarrow c } \right|\]=6
Hence the required value is 6.
Note: The formula of \[{\left( {a + b - c} \right)^2}\] is \[{a^2} + {b^2} + {c^2} + 2ab - 2bc - 2ca\], sometime students get confused with the formula.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2026 Syllabus PDF - Download Paper 1 and 2 Syllabus by NTA

JEE Main Eligibility Criteria 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes
