
Let \[R\] be relation on the set \[N\] be defined by \[\left\{ {\left( {x,y} \right)|x,y \in N, 2x + y = 41} \right\}\]. Then find the type of the relation \[R\].
A. Reflexive
B. Symmetric
C. Transitive
D. None of these
Answer
162.9k+ views
Hint In the given question, the relation on a set of natural numbers is given. By using the definitions of reflexive, symmetric, and transitive relation, we will find the type of relation \[R\].
Formula used:
Let \[R\] be the relation on a set \[A\]. Then,
\[R\] is reflexive if for all \[x \in A\], \[xRx\].
\[R\] is symmetric if for all \[x,y \in A\], if \[xRy\], then \[yRx\].
\[R\] is transitive if for all \[x,y,z \in A\], if \[xRy\] and \[yRz\], then \[xRz\].
Complete step by step solution:
The given relation on set \[N\] is, \[R = \left\{ {\left( {x,y} \right)|x,y \in N, 2x + y = 41} \right\}\].
Putting \[x = 1\] in the equation \[2x + y = 41\]
\[2 \cdot 1 + y = 41\]
\[ \Rightarrow y = 39\]
Putting \[x = 2\] in the equation \[2x + y = 41\]
\[2 \cdot 2 + y = 41\]
\[ \Rightarrow y = 37\]
Putting \[x = 3\] in the equation \[2x + y = 41\]
\[2 \cdot 3 + y = 41\]
\[ \Rightarrow y = 35\]
So on.
The relation can be written as:
\[R = \left\{ {\left( {1,39} \right),\left( {2,37} \right),\left( {3,35} \right),....,\left( {10,21} \right),\left( {11,19} \right),....,\left( {20,1} \right)} \right\}\]
Let’s check whether the relation is reflexive, symmetric, or transitive.
Reflexive:
Let \[\left( {x,x} \right) \in R\].
Putting \[y = x\] in the equation \[2x + y = 41\].
\[2x + x = 41\]
\[ \Rightarrow \]\[3x = 41\]
\[ \Rightarrow \]\[x = \dfrac{{41}}{3}\]
But \[x \notin N\]
Hence, the relation is not reflexive.
Symmetric:
If \[\left( {x,y} \right) \in R\], then \[\left( {y,x} \right) \in R\]
For \[\left( {1,39} \right)\]:
\[2\left( 1 \right) + 39 = 41\]
\[ \Rightarrow \]\[2 + 39 = 41\]
\[ \Rightarrow \]\[41 = 41\]
\[ \Rightarrow \]\[\left( {1,39} \right) \in R\]
For \[\left( {39,1} \right)\]:
\[2\left( {39} \right) + 1 = 41\]
\[ \Rightarrow \]\[78 + 1 = 41\]
\[ \Rightarrow \]\[79 \ne 41\]
\[ \Rightarrow \]\[\left( {39,1} \right) \notin R\]
Since \[\left( {1,39} \right) \in R\] does not imply \[\left( {39,1} \right) \in R\]
Hence, the relation is not symmetric.
Transitive:
If \[\left( {x,y} \right) \in R, \left( {y,z} \right) \in R\], then \[\left( {x,z} \right) \in R\]
Check the equation \[2x + y = 41\] for the point \[\left( {20,1} \right)\],
\[2\left( {20} \right) + 1 = 41\]
\[ \Rightarrow \]\[40+1=41\]
\[ \Rightarrow \]\[41 = 41\]
\[ \Rightarrow \]\[\left( {20,1} \right) \in R\]
Check the equation \[2x + y = 41\] for the point \[\left( {1,39} \right)\],
\[2\left( 1 \right) + 39 = 41\]
\[ \Rightarrow \]\[2 + 39 = 41\]
\[ \Rightarrow \]\[41 = 41\]
\[ \Rightarrow \]\[\left( {1,39} \right) \in R\]
Check the equation \[2x + y = 41\] for the point \[\left( {20,39} \right)\],
\[2\left( {20} \right) + 39 = 41\]
\[ \Rightarrow \]\[40 + 39 = 41\]
\[ \Rightarrow \]\[79 \ne 41\]
\[ \Rightarrow \]\[\left( {20,39} \right) \notin R\]
Since \[\left( {20,1} \right),\left( {1,39} \right) \in R\] does not imply \[\left( {20,39} \right) \in R\]
Hence, the relation is not transitive.
Hence the correct option is D.
Note: There is another property of relation. The name of the property is antisymmetric property. It states that \[a,b\] belong to set \[A\] and the relation \[R\] is defined on \[A\], then \[\left( {a,b} \right) \in R\]does not imply that \[\left( {b,a} \right) \in R\] when \[a \ne b\].
Formula used:
Let \[R\] be the relation on a set \[A\]. Then,
\[R\] is reflexive if for all \[x \in A\], \[xRx\].
\[R\] is symmetric if for all \[x,y \in A\], if \[xRy\], then \[yRx\].
\[R\] is transitive if for all \[x,y,z \in A\], if \[xRy\] and \[yRz\], then \[xRz\].
Complete step by step solution:
The given relation on set \[N\] is, \[R = \left\{ {\left( {x,y} \right)|x,y \in N, 2x + y = 41} \right\}\].
Putting \[x = 1\] in the equation \[2x + y = 41\]
\[2 \cdot 1 + y = 41\]
\[ \Rightarrow y = 39\]
Putting \[x = 2\] in the equation \[2x + y = 41\]
\[2 \cdot 2 + y = 41\]
\[ \Rightarrow y = 37\]
Putting \[x = 3\] in the equation \[2x + y = 41\]
\[2 \cdot 3 + y = 41\]
\[ \Rightarrow y = 35\]
So on.
The relation can be written as:
\[R = \left\{ {\left( {1,39} \right),\left( {2,37} \right),\left( {3,35} \right),....,\left( {10,21} \right),\left( {11,19} \right),....,\left( {20,1} \right)} \right\}\]
Let’s check whether the relation is reflexive, symmetric, or transitive.
Reflexive:
Let \[\left( {x,x} \right) \in R\].
Putting \[y = x\] in the equation \[2x + y = 41\].
\[2x + x = 41\]
\[ \Rightarrow \]\[3x = 41\]
\[ \Rightarrow \]\[x = \dfrac{{41}}{3}\]
But \[x \notin N\]
Hence, the relation is not reflexive.
Symmetric:
If \[\left( {x,y} \right) \in R\], then \[\left( {y,x} \right) \in R\]
For \[\left( {1,39} \right)\]:
\[2\left( 1 \right) + 39 = 41\]
\[ \Rightarrow \]\[2 + 39 = 41\]
\[ \Rightarrow \]\[41 = 41\]
\[ \Rightarrow \]\[\left( {1,39} \right) \in R\]
For \[\left( {39,1} \right)\]:
\[2\left( {39} \right) + 1 = 41\]
\[ \Rightarrow \]\[78 + 1 = 41\]
\[ \Rightarrow \]\[79 \ne 41\]
\[ \Rightarrow \]\[\left( {39,1} \right) \notin R\]
Since \[\left( {1,39} \right) \in R\] does not imply \[\left( {39,1} \right) \in R\]
Hence, the relation is not symmetric.
Transitive:
If \[\left( {x,y} \right) \in R, \left( {y,z} \right) \in R\], then \[\left( {x,z} \right) \in R\]
Check the equation \[2x + y = 41\] for the point \[\left( {20,1} \right)\],
\[2\left( {20} \right) + 1 = 41\]
\[ \Rightarrow \]\[40+1=41\]
\[ \Rightarrow \]\[41 = 41\]
\[ \Rightarrow \]\[\left( {20,1} \right) \in R\]
Check the equation \[2x + y = 41\] for the point \[\left( {1,39} \right)\],
\[2\left( 1 \right) + 39 = 41\]
\[ \Rightarrow \]\[2 + 39 = 41\]
\[ \Rightarrow \]\[41 = 41\]
\[ \Rightarrow \]\[\left( {1,39} \right) \in R\]
Check the equation \[2x + y = 41\] for the point \[\left( {20,39} \right)\],
\[2\left( {20} \right) + 39 = 41\]
\[ \Rightarrow \]\[40 + 39 = 41\]
\[ \Rightarrow \]\[79 \ne 41\]
\[ \Rightarrow \]\[\left( {20,39} \right) \notin R\]
Since \[\left( {20,1} \right),\left( {1,39} \right) \in R\] does not imply \[\left( {20,39} \right) \in R\]
Hence, the relation is not transitive.
Hence the correct option is D.
Note: There is another property of relation. The name of the property is antisymmetric property. It states that \[a,b\] belong to set \[A\] and the relation \[R\] is defined on \[A\], then \[\left( {a,b} \right) \in R\]does not imply that \[\left( {b,a} \right) \in R\] when \[a \ne b\].
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

1 Billion in Rupees

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE
