
Let m be the minimum possible value of ${\log _3}({3^{{y_1}}} + {3^{{y_2}}} + {3^{{y_3}}})$ , where $y_1, y_2, y_3$ are real numbers for which ${y_1} + {y_2} + {y_3} = 9$ . Let M be the maximum possible value of $\left( {{{\log }_3}{x_1} + {{\log }_3}{x_2} + {{\log }_3}{x_3}} \right)$ , where x1, x2, x3 are real numbers for which ${x_1} + {x_2} + {x_3} = 9$ . Then find the value of ${\log _2}{\left( m \right)^3} + {\log _3}{\left( M \right)^2}$ .
Answer
232.8k+ views
Hint: Here in this question we use the concept of Arithmetic Mean (AM) and Geometric Mean (GM). We know that GM is always lesser than or equal to AM. We use this concept twice in the solution, first to find the value of m and then to find the value of M. While solving the question we use some logarithmic identities like $\log (x) + \log (y) = \log (xy)$ .
Complete step by step solution:
We know that, Arithmetic Mean i.e. $AM = \dfrac{{sum\,of\,entries}}{{number\,of\,entries}}$
and Geometric Mean i.e. $GM = {\left( {product\,of\,entries} \right)^{\dfrac{1}{{number\,of\,entries}}}}$
Now, $AM \geqslant GM$ ...(1)
Here $AM = \dfrac{{{3^{{y_1}}} + {3^{{y_2}}} + {3^{{y_3}}}}}{3}$
And $GM = {\left( {{3^{{y_1}}} \times {3^{{y_2}}} \times {3^{{y_3}}}} \right)^{\dfrac{1}{3}}}$
By substituting these values in equation (1), we get
$\dfrac{{{3^{{y_1}}} + {3^{{y_2}}} + {3^{{y_3}}}}}{3} \geqslant {\left( {{3^{{y_1}}} \times {3^{{y_2}}} \times {3^{{y_3}}}} \right)^{\dfrac{1}{3}}}$ ...(2)
We know that, $\left( {{x^a} \times {x^b} \times {x^c}} \right) = {x^{\left( {a + b + c} \right)}}$
This implies that $\left( {{3^{{y_1}}} \times {3^{{y_2}}} \times {3^{{y_3}}}} \right) = {3^{\left( {{y_1} + {y_2} + {y_3}} \right)}}$
Putting this in equation (2), we get
\[\dfrac{{{3^{{y_1}}} + {3^{{y_2}}} + {3^{{y_3}}}}}{3} \geqslant {\left( {{3^{\left( {{y_1} + {y_2} + {y_3}} \right)}}} \right)^{\dfrac{1}{3}}}\]
It is given in the question that ${y_1} + {y_2} + {y_3} = 9$
Therefore, \[{3^{{y_1}}} + {3^{{y_2}}} + {3^{{y_3}}} \geqslant 3 \times {\left( {{3^9}} \right)^{\dfrac{1}{3}}}\]
\[{3^{{y_1}}} + {3^{{y_2}}} + {3^{{y_3}}} \geqslant 3 \times \left( {{3^3}} \right)\]
Thus we get that \[{3^{{y_1}}} + {3^{{y_2}}} + {3^{{y_3}}} \geqslant 81\] ...(3)
It is given that m is the minimum possible value of ${\log _3}({3^{{y_1}}} + {3^{{y_2}}} + {3^{{y_3}}})$ .
This implies that $m = {\log _3}({3^{{y_1}}} + {3^{{y_2}}} + {3^{{y_3}}})$
$m = {\log _3}(81)$
$81$ can be written as ${3^4}$ .
So, $m = {\log _3}\left( {{3^4}} \right)$
$m = 4{\log _3}\left( 3 \right)$
Also, ${\log _3}(3) = 1$
Thus $m = 4$ ...(4)
Similarly we find the value of M.
$AM \geqslant GM$
This time $AM = \dfrac{{{3^{{x_1}}} + {3^{{x_2}}} + {3^{{x_3}}}}}{3}$
And \[GM = {\left( {{3^{{x_1}}} \times {3^{{x_2}}} \times {3^{{x_3}}}} \right)^{\dfrac{1}{3}}}\]
Again substituting these equations in (1), we get
\[\dfrac{{{x_1} + {x_2} + {x_3}}}{3} = {\left( {{x_1} \times {x_2} \times {x_3}} \right)^{\dfrac{1}{3}}}\]
Given: ${x_1} + {x_2} + {x_3} = 9$
Therefore, $\dfrac{9}{3} = {\left( {{x_1} \times {x_2} \times {x_3}} \right)^{\dfrac{1}{3}}}$
$3 = {\left( {{x_1} \times {x_2} \times {x_3}} \right)^{\dfrac{1}{3}}}$
This implies that ${3^3} = \left( {{x_1} \times {x_2} \times {x_3}} \right)$
$27 = \left( {{x_1} \times {x_2} \times {x_3}} \right)$
$\left( {{x_1} \times {x_2} \times {x_3}} \right) = 27$ ...(5)
Now it is given in the question that M is the maximum possible value of $\left( {{{\log }_3}{x_1} + {{\log }_3}{x_2} + {{\log }_3}{x_3}} \right)$ .
So, $M = \left( {{{\log }_3}{x_1} + {{\log }_3}{x_2} + {{\log }_3}{x_3}} \right)$
Also, we know that $\log (x) + \log (y) = \log (xy)$ .
So we write $M = \log ({x_1} \times {x_2} \times {x_3})$
Substituting from the required value from equation (5), we get
$M = {\log _3}27$
Thus, $M = 3$ ...(6)
Now we find the value of ${\log _2}{\left( m \right)^3} + {\log _3}{\left( M \right)^2}$ .
Substitute the value of m and M from the equations (4) and (5).
${\log _2}{\left( m \right)^3} + {\log _3}{\left( M \right)^2} = {\log _2}{\left( 4 \right)^3} + {\log _3}{\left( 3 \right)^2}$
${\log _2}{\left( m \right)^3} + {\log _3}{\left( M \right)^2} = {\log _2}{\left( {{2^2}} \right)^3} + {\log _3}{\left( 3 \right)^2}$
On solving further we get,
${\log _2}{\left( m \right)^3} + {\log _3}{\left( M \right)^2} = {\log _2}({2^6}) + {\log _3}{\left( 3 \right)^2}$
This implies ${\log _2}{\left( m \right)^3} + {\log _3}{\left( M \right)^2} = 6 \times {\log _2}2 + 2 \times {\log _3}3$
And we know that ${\log _a}(a) = 1$
So we get, ${\log _2}{\left( m \right)^3} + {\log _3}{\left( M \right)^2} = (6 \times 1) + (2 \times 1)$
Thus we get the final answer, ${\log _2}{\left( m \right)^3} + {\log _3}{\left( M \right)^2} = 8$ .
Note: While solving the question do not write $\log (x + y) = \log x + \log y$ as this is not a logarithmic identity instead $\log (x) + \log (y) = \log (xy)$ is a logarithmic identity. Also we should always keep in mind the base of log given in the question because it may not be to the base e (natural log) or to the base 10 always.
Complete step by step solution:
We know that, Arithmetic Mean i.e. $AM = \dfrac{{sum\,of\,entries}}{{number\,of\,entries}}$
and Geometric Mean i.e. $GM = {\left( {product\,of\,entries} \right)^{\dfrac{1}{{number\,of\,entries}}}}$
Now, $AM \geqslant GM$ ...(1)
Here $AM = \dfrac{{{3^{{y_1}}} + {3^{{y_2}}} + {3^{{y_3}}}}}{3}$
And $GM = {\left( {{3^{{y_1}}} \times {3^{{y_2}}} \times {3^{{y_3}}}} \right)^{\dfrac{1}{3}}}$
By substituting these values in equation (1), we get
$\dfrac{{{3^{{y_1}}} + {3^{{y_2}}} + {3^{{y_3}}}}}{3} \geqslant {\left( {{3^{{y_1}}} \times {3^{{y_2}}} \times {3^{{y_3}}}} \right)^{\dfrac{1}{3}}}$ ...(2)
We know that, $\left( {{x^a} \times {x^b} \times {x^c}} \right) = {x^{\left( {a + b + c} \right)}}$
This implies that $\left( {{3^{{y_1}}} \times {3^{{y_2}}} \times {3^{{y_3}}}} \right) = {3^{\left( {{y_1} + {y_2} + {y_3}} \right)}}$
Putting this in equation (2), we get
\[\dfrac{{{3^{{y_1}}} + {3^{{y_2}}} + {3^{{y_3}}}}}{3} \geqslant {\left( {{3^{\left( {{y_1} + {y_2} + {y_3}} \right)}}} \right)^{\dfrac{1}{3}}}\]
It is given in the question that ${y_1} + {y_2} + {y_3} = 9$
Therefore, \[{3^{{y_1}}} + {3^{{y_2}}} + {3^{{y_3}}} \geqslant 3 \times {\left( {{3^9}} \right)^{\dfrac{1}{3}}}\]
\[{3^{{y_1}}} + {3^{{y_2}}} + {3^{{y_3}}} \geqslant 3 \times \left( {{3^3}} \right)\]
Thus we get that \[{3^{{y_1}}} + {3^{{y_2}}} + {3^{{y_3}}} \geqslant 81\] ...(3)
It is given that m is the minimum possible value of ${\log _3}({3^{{y_1}}} + {3^{{y_2}}} + {3^{{y_3}}})$ .
This implies that $m = {\log _3}({3^{{y_1}}} + {3^{{y_2}}} + {3^{{y_3}}})$
$m = {\log _3}(81)$
$81$ can be written as ${3^4}$ .
So, $m = {\log _3}\left( {{3^4}} \right)$
$m = 4{\log _3}\left( 3 \right)$
Also, ${\log _3}(3) = 1$
Thus $m = 4$ ...(4)
Similarly we find the value of M.
$AM \geqslant GM$
This time $AM = \dfrac{{{3^{{x_1}}} + {3^{{x_2}}} + {3^{{x_3}}}}}{3}$
And \[GM = {\left( {{3^{{x_1}}} \times {3^{{x_2}}} \times {3^{{x_3}}}} \right)^{\dfrac{1}{3}}}\]
Again substituting these equations in (1), we get
\[\dfrac{{{x_1} + {x_2} + {x_3}}}{3} = {\left( {{x_1} \times {x_2} \times {x_3}} \right)^{\dfrac{1}{3}}}\]
Given: ${x_1} + {x_2} + {x_3} = 9$
Therefore, $\dfrac{9}{3} = {\left( {{x_1} \times {x_2} \times {x_3}} \right)^{\dfrac{1}{3}}}$
$3 = {\left( {{x_1} \times {x_2} \times {x_3}} \right)^{\dfrac{1}{3}}}$
This implies that ${3^3} = \left( {{x_1} \times {x_2} \times {x_3}} \right)$
$27 = \left( {{x_1} \times {x_2} \times {x_3}} \right)$
$\left( {{x_1} \times {x_2} \times {x_3}} \right) = 27$ ...(5)
Now it is given in the question that M is the maximum possible value of $\left( {{{\log }_3}{x_1} + {{\log }_3}{x_2} + {{\log }_3}{x_3}} \right)$ .
So, $M = \left( {{{\log }_3}{x_1} + {{\log }_3}{x_2} + {{\log }_3}{x_3}} \right)$
Also, we know that $\log (x) + \log (y) = \log (xy)$ .
So we write $M = \log ({x_1} \times {x_2} \times {x_3})$
Substituting from the required value from equation (5), we get
$M = {\log _3}27$
Thus, $M = 3$ ...(6)
Now we find the value of ${\log _2}{\left( m \right)^3} + {\log _3}{\left( M \right)^2}$ .
Substitute the value of m and M from the equations (4) and (5).
${\log _2}{\left( m \right)^3} + {\log _3}{\left( M \right)^2} = {\log _2}{\left( 4 \right)^3} + {\log _3}{\left( 3 \right)^2}$
${\log _2}{\left( m \right)^3} + {\log _3}{\left( M \right)^2} = {\log _2}{\left( {{2^2}} \right)^3} + {\log _3}{\left( 3 \right)^2}$
On solving further we get,
${\log _2}{\left( m \right)^3} + {\log _3}{\left( M \right)^2} = {\log _2}({2^6}) + {\log _3}{\left( 3 \right)^2}$
This implies ${\log _2}{\left( m \right)^3} + {\log _3}{\left( M \right)^2} = 6 \times {\log _2}2 + 2 \times {\log _3}3$
And we know that ${\log _a}(a) = 1$
So we get, ${\log _2}{\left( m \right)^3} + {\log _3}{\left( M \right)^2} = (6 \times 1) + (2 \times 1)$
Thus we get the final answer, ${\log _2}{\left( m \right)^3} + {\log _3}{\left( M \right)^2} = 8$ .
Note: While solving the question do not write $\log (x + y) = \log x + \log y$ as this is not a logarithmic identity instead $\log (x) + \log (y) = \log (xy)$ is a logarithmic identity. Also we should always keep in mind the base of log given in the question because it may not be to the base e (natural log) or to the base 10 always.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

