
Let, $f(x)=x-[x];x\in R$, where [.] represents the greatest integer function, then $f'\left( \dfrac{1}{2} \right)$ is equal to,
a) 1
b) 0
c) -1
d) 2
Answer
219.6k+ views
Hint: Use the formula given below to solve the problem,
$[x]=x$ If ‘x’ is an integer
$\dfrac{d}{dx}[x]=0$ If x is a fraction
$\dfrac{d}{dx}[x]=\infty $ If x is an integer
Complete step by step answer:
We will write given equation first,
$f(x)=x-[x]$
As [.] is a greatest integer function therefore we should know the formula to find derivative of greatest integer function before finding the derivative of f(x),
Formula:
$\dfrac{d}{dx}[x]=0$ If x is a fraction…………………………….. (1)
$\dfrac{d}{dx}[x]=\infty $ If x is an integer
Now,
$f(x)=x-[x]$
Differentiating f(x) with respect to x,
$\therefore f'(x)=\dfrac{d}{dx}\left( x-[x] \right)$
If we differentiate the two terms separately we will get,
\[\therefore f'(x)=\dfrac{d}{dx}x-\dfrac{d}{dx}[x]\]
As we know the formula to find the derivative of ‘x’ which is \[\dfrac{d}{dx}x=1\],
\[\therefore f'(x)=1-\dfrac{d}{dx}[x]\]
Here, we have to find the derivative of $f(x)$ at $x=\dfrac{1}{2}$
As $x=\dfrac{1}{2}$ is a fraction therefore we can use the formula number 1 so that we can directly write, \[f'(\dfrac{1}{2})\]
\[\therefore f'(\dfrac{1}{2})=1-0\]
\[\therefore f'(\dfrac{1}{2})=1\]
Therefore, we will get the final answer as \[f'(\dfrac{1}{2})\] is 1
Hence, the correct answer is option (a).
Note:
While calculating derivatives of greatest integer function always check whether the value of x is fraction or an integer.
If we don’t know the formula of derivative of greatest integer function then we should at least know the definition which is given below to solve this type of problems,
If f(x) = [x] then,
$[x]=0~$ If ‘x’ is a fraction
$[x]=x~$ If ‘x’ is an integer
$[x]=x$ If ‘x’ is an integer
$\dfrac{d}{dx}[x]=0$ If x is a fraction
$\dfrac{d}{dx}[x]=\infty $ If x is an integer
Complete step by step answer:
We will write given equation first,
$f(x)=x-[x]$
As [.] is a greatest integer function therefore we should know the formula to find derivative of greatest integer function before finding the derivative of f(x),
Formula:
$\dfrac{d}{dx}[x]=0$ If x is a fraction…………………………….. (1)
$\dfrac{d}{dx}[x]=\infty $ If x is an integer
Now,
$f(x)=x-[x]$
Differentiating f(x) with respect to x,
$\therefore f'(x)=\dfrac{d}{dx}\left( x-[x] \right)$
If we differentiate the two terms separately we will get,
\[\therefore f'(x)=\dfrac{d}{dx}x-\dfrac{d}{dx}[x]\]
As we know the formula to find the derivative of ‘x’ which is \[\dfrac{d}{dx}x=1\],
\[\therefore f'(x)=1-\dfrac{d}{dx}[x]\]
Here, we have to find the derivative of $f(x)$ at $x=\dfrac{1}{2}$
As $x=\dfrac{1}{2}$ is a fraction therefore we can use the formula number 1 so that we can directly write, \[f'(\dfrac{1}{2})\]
\[\therefore f'(\dfrac{1}{2})=1-0\]
\[\therefore f'(\dfrac{1}{2})=1\]
Therefore, we will get the final answer as \[f'(\dfrac{1}{2})\] is 1
Hence, the correct answer is option (a).
Note:
While calculating derivatives of greatest integer function always check whether the value of x is fraction or an integer.
If we don’t know the formula of derivative of greatest integer function then we should at least know the definition which is given below to solve this type of problems,
If f(x) = [x] then,
$[x]=0~$ If ‘x’ is a fraction
$[x]=x~$ If ‘x’ is an integer
Recently Updated Pages
The maximum number of equivalence relations on the-class-11-maths-JEE_Main

A train is going from London to Cambridge stops at class 11 maths JEE_Main

Find the reminder when 798 is divided by 5 class 11 maths JEE_Main

An aeroplane left 50 minutes later than its schedu-class-11-maths-JEE_Main

A man on the top of a vertical observation tower o-class-11-maths-JEE_Main

In an election there are 8 candidates out of which class 11 maths JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

