
Let, $f(x)=x-[x];x\in R$, where [.] represents the greatest integer function, then $f'\left( \dfrac{1}{2} \right)$ is equal to,
a) 1
b) 0
c) -1
d) 2
Answer
162.6k+ views
Hint: Use the formula given below to solve the problem,
$[x]=x$ If ‘x’ is an integer
$\dfrac{d}{dx}[x]=0$ If x is a fraction
$\dfrac{d}{dx}[x]=\infty $ If x is an integer
Complete step by step answer:
We will write given equation first,
$f(x)=x-[x]$
As [.] is a greatest integer function therefore we should know the formula to find derivative of greatest integer function before finding the derivative of f(x),
Formula:
$\dfrac{d}{dx}[x]=0$ If x is a fraction…………………………….. (1)
$\dfrac{d}{dx}[x]=\infty $ If x is an integer
Now,
$f(x)=x-[x]$
Differentiating f(x) with respect to x,
$\therefore f'(x)=\dfrac{d}{dx}\left( x-[x] \right)$
If we differentiate the two terms separately we will get,
\[\therefore f'(x)=\dfrac{d}{dx}x-\dfrac{d}{dx}[x]\]
As we know the formula to find the derivative of ‘x’ which is \[\dfrac{d}{dx}x=1\],
\[\therefore f'(x)=1-\dfrac{d}{dx}[x]\]
Here, we have to find the derivative of $f(x)$ at $x=\dfrac{1}{2}$
As $x=\dfrac{1}{2}$ is a fraction therefore we can use the formula number 1 so that we can directly write, \[f'(\dfrac{1}{2})\]
\[\therefore f'(\dfrac{1}{2})=1-0\]
\[\therefore f'(\dfrac{1}{2})=1\]
Therefore, we will get the final answer as \[f'(\dfrac{1}{2})\] is 1
Hence, the correct answer is option (a).
Note:
While calculating derivatives of greatest integer function always check whether the value of x is fraction or an integer.
If we don’t know the formula of derivative of greatest integer function then we should at least know the definition which is given below to solve this type of problems,
If f(x) = [x] then,
$[x]=0~$ If ‘x’ is a fraction
$[x]=x~$ If ‘x’ is an integer
$[x]=x$ If ‘x’ is an integer
$\dfrac{d}{dx}[x]=0$ If x is a fraction
$\dfrac{d}{dx}[x]=\infty $ If x is an integer
Complete step by step answer:
We will write given equation first,
$f(x)=x-[x]$
As [.] is a greatest integer function therefore we should know the formula to find derivative of greatest integer function before finding the derivative of f(x),
Formula:
$\dfrac{d}{dx}[x]=0$ If x is a fraction…………………………….. (1)
$\dfrac{d}{dx}[x]=\infty $ If x is an integer
Now,
$f(x)=x-[x]$
Differentiating f(x) with respect to x,
$\therefore f'(x)=\dfrac{d}{dx}\left( x-[x] \right)$
If we differentiate the two terms separately we will get,
\[\therefore f'(x)=\dfrac{d}{dx}x-\dfrac{d}{dx}[x]\]
As we know the formula to find the derivative of ‘x’ which is \[\dfrac{d}{dx}x=1\],
\[\therefore f'(x)=1-\dfrac{d}{dx}[x]\]
Here, we have to find the derivative of $f(x)$ at $x=\dfrac{1}{2}$
As $x=\dfrac{1}{2}$ is a fraction therefore we can use the formula number 1 so that we can directly write, \[f'(\dfrac{1}{2})\]
\[\therefore f'(\dfrac{1}{2})=1-0\]
\[\therefore f'(\dfrac{1}{2})=1\]
Therefore, we will get the final answer as \[f'(\dfrac{1}{2})\] is 1
Hence, the correct answer is option (a).
Note:
While calculating derivatives of greatest integer function always check whether the value of x is fraction or an integer.
If we don’t know the formula of derivative of greatest integer function then we should at least know the definition which is given below to solve this type of problems,
If f(x) = [x] then,
$[x]=0~$ If ‘x’ is a fraction
$[x]=x~$ If ‘x’ is an integer
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Instantaneous Velocity - Formula based Examples for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

JEE Advanced 2025 Notes
