Answer
Verified
95.4k+ views
Hint: Use the formula given below to solve the problem,
$[x]=x$ If ‘x’ is an integer
$\dfrac{d}{dx}[x]=0$ If x is a fraction
$\dfrac{d}{dx}[x]=\infty $ If x is an integer
Complete step by step answer:
We will write given equation first,
$f(x)=x-[x]$
As [.] is a greatest integer function therefore we should know the formula to find derivative of greatest integer function before finding the derivative of f(x),
Formula:
$\dfrac{d}{dx}[x]=0$ If x is a fraction…………………………….. (1)
$\dfrac{d}{dx}[x]=\infty $ If x is an integer
Now,
$f(x)=x-[x]$
Differentiating f(x) with respect to x,
$\therefore f'(x)=\dfrac{d}{dx}\left( x-[x] \right)$
If we differentiate the two terms separately we will get,
\[\therefore f'(x)=\dfrac{d}{dx}x-\dfrac{d}{dx}[x]\]
As we know the formula to find the derivative of ‘x’ which is \[\dfrac{d}{dx}x=1\],
\[\therefore f'(x)=1-\dfrac{d}{dx}[x]\]
Here, we have to find the derivative of $f(x)$ at $x=\dfrac{1}{2}$
As $x=\dfrac{1}{2}$ is a fraction therefore we can use the formula number 1 so that we can directly write, \[f'(\dfrac{1}{2})\]
\[\therefore f'(\dfrac{1}{2})=1-0\]
\[\therefore f'(\dfrac{1}{2})=1\]
Therefore, we will get the final answer as \[f'(\dfrac{1}{2})\] is 1
Hence, the correct answer is option (a).
Note:
While calculating derivatives of greatest integer function always check whether the value of x is fraction or an integer.
If we don’t know the formula of derivative of greatest integer function then we should at least know the definition which is given below to solve this type of problems,
If f(x) = [x] then,
$[x]=0~$ If ‘x’ is a fraction
$[x]=x~$ If ‘x’ is an integer
$[x]=x$ If ‘x’ is an integer
$\dfrac{d}{dx}[x]=0$ If x is a fraction
$\dfrac{d}{dx}[x]=\infty $ If x is an integer
Complete step by step answer:
We will write given equation first,
$f(x)=x-[x]$
As [.] is a greatest integer function therefore we should know the formula to find derivative of greatest integer function before finding the derivative of f(x),
Formula:
$\dfrac{d}{dx}[x]=0$ If x is a fraction…………………………….. (1)
$\dfrac{d}{dx}[x]=\infty $ If x is an integer
Now,
$f(x)=x-[x]$
Differentiating f(x) with respect to x,
$\therefore f'(x)=\dfrac{d}{dx}\left( x-[x] \right)$
If we differentiate the two terms separately we will get,
\[\therefore f'(x)=\dfrac{d}{dx}x-\dfrac{d}{dx}[x]\]
As we know the formula to find the derivative of ‘x’ which is \[\dfrac{d}{dx}x=1\],
\[\therefore f'(x)=1-\dfrac{d}{dx}[x]\]
Here, we have to find the derivative of $f(x)$ at $x=\dfrac{1}{2}$
As $x=\dfrac{1}{2}$ is a fraction therefore we can use the formula number 1 so that we can directly write, \[f'(\dfrac{1}{2})\]
\[\therefore f'(\dfrac{1}{2})=1-0\]
\[\therefore f'(\dfrac{1}{2})=1\]
Therefore, we will get the final answer as \[f'(\dfrac{1}{2})\] is 1
Hence, the correct answer is option (a).
Note:
While calculating derivatives of greatest integer function always check whether the value of x is fraction or an integer.
If we don’t know the formula of derivative of greatest integer function then we should at least know the definition which is given below to solve this type of problems,
If f(x) = [x] then,
$[x]=0~$ If ‘x’ is a fraction
$[x]=x~$ If ‘x’ is an integer
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
Given figure shows the vertical section of a frictionless class 11 physics JEE_Main
The youngs modulus of air is A Infinity B more than class 11 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
An object is moving with speed v0 towards a spherical class 12 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main