
Let $f(x)=x^{3}$. Use the mean value theorem to write $[f(x+h)-f$ $(x)] / h=f^{\prime}(x+\theta h)$ with $0<\theta<1$. If $x \neq 0$, then $\lim _{h \rightarrow 0} \theta=$
A. $-1$
B. $-0.5$
C. $0.5$
D. 1
Answer
162.9k+ views
Hint: In this question, we used the mean value theorem.So first we differentiate the given equation, then we use the mean value theorem and solving it further by taking the limit as h approaches to 0, we find the desirable answer.
Formula Used:
Mean value theorem:
if a function f is continuous on the closed interval $[a,b]$ and differentiable on the open interval (a,b), then there exists a point $c$ in the interval $[a,b]$ such that $f'(c)$ equals the function's average rate of change throughout $[a,b]$.
Complete Step by step Solution:
Given, $f(x)=x^{3}$
$\therefore f(x+h)=(x+h)^{3}$
The instantaneous rate of change of a function at a certain position is known as the derivative of a function. The derivative provides the precise slope of the curve at a given location. The function's derivative, or the derivative of $y$ with respect to the variable $x$, is denoted by the symbol $dy/dx$.
The derivative of the function is
Now, $f^{\prime}(x)=3 x^{2}$
$\therefore f^{\prime}(x+\theta h)=3(x+\theta h)^{2}$
Given that
$\text{ }\dfrac{f(x+h)-f(x)}{h}={{f}^{\prime }}(x+\theta h)$
$\Rightarrow \dfrac{(x+h)^{3}-x^{3}}{h}=3(x+\theta h)^{2}$
Simplifying the expression we get
$\Rightarrow \dfrac{x^{3}+h^{3}+3 x h(x+h)-x^{3}}{h}$$=3\left(x^{2}+\theta^{2} h^{2}+2 x \theta h\right)$
$\Rightarrow h^{2}+3 x^{2}+3 x h=3 x^{2}+3 \theta^{2} h^{2}+6 x \theta h$
${{h}^{2}}+3xh=3{{\theta }^{2}}{{h}^{2}}+6x\theta h$
Taking limit on both sides, we get
$\lim _{h \rightarrow 0}(h+3 x)=\lim _{h \rightarrow 0}\left(3 \theta^{2} h+6 x \theta\right)$
The limit of a function is denoted by the shorthand notation $\lim _{x \rightarrow p} f(x)=L$, which shows that as $x$ approaches a from both the left and the right of $x=a$, the output value approaches $L$.
$3x=0 + 6x. \underset{h\to 0}{\mathop{\lim }}\,\theta $
$\Rightarrow \lim _{h \rightarrow 0} \theta=\dfrac{1}{2}=0.5$
So the correct answer is option (C).
Note: The Mean Value Theorem is a specific case of Rolle's Theorem. We take into account differentiable functions $f$ in Rolle's theorem that have zero ends. Rolle's theorem is generalized by the mean value theorem by taking into account functions whose ends are not always zero.
The mean value theorem is a key finding in real analysis that is highly helpful for understanding how functions behave in higher mathematics. Before developing it logically as a general case of Rolle's Theorem and comprehending its significance, we will simply state the theorem.
Formula Used:
Mean value theorem:
if a function f is continuous on the closed interval $[a,b]$ and differentiable on the open interval (a,b), then there exists a point $c$ in the interval $[a,b]$ such that $f'(c)$ equals the function's average rate of change throughout $[a,b]$.
Complete Step by step Solution:
Given, $f(x)=x^{3}$
$\therefore f(x+h)=(x+h)^{3}$
The instantaneous rate of change of a function at a certain position is known as the derivative of a function. The derivative provides the precise slope of the curve at a given location. The function's derivative, or the derivative of $y$ with respect to the variable $x$, is denoted by the symbol $dy/dx$.
The derivative of the function is
Now, $f^{\prime}(x)=3 x^{2}$
$\therefore f^{\prime}(x+\theta h)=3(x+\theta h)^{2}$
Given that
$\text{ }\dfrac{f(x+h)-f(x)}{h}={{f}^{\prime }}(x+\theta h)$
$\Rightarrow \dfrac{(x+h)^{3}-x^{3}}{h}=3(x+\theta h)^{2}$
Simplifying the expression we get
$\Rightarrow \dfrac{x^{3}+h^{3}+3 x h(x+h)-x^{3}}{h}$$=3\left(x^{2}+\theta^{2} h^{2}+2 x \theta h\right)$
$\Rightarrow h^{2}+3 x^{2}+3 x h=3 x^{2}+3 \theta^{2} h^{2}+6 x \theta h$
${{h}^{2}}+3xh=3{{\theta }^{2}}{{h}^{2}}+6x\theta h$
Taking limit on both sides, we get
$\lim _{h \rightarrow 0}(h+3 x)=\lim _{h \rightarrow 0}\left(3 \theta^{2} h+6 x \theta\right)$
The limit of a function is denoted by the shorthand notation $\lim _{x \rightarrow p} f(x)=L$, which shows that as $x$ approaches a from both the left and the right of $x=a$, the output value approaches $L$.
$3x=0 + 6x. \underset{h\to 0}{\mathop{\lim }}\,\theta $
$\Rightarrow \lim _{h \rightarrow 0} \theta=\dfrac{1}{2}=0.5$
So the correct answer is option (C).
Note: The Mean Value Theorem is a specific case of Rolle's Theorem. We take into account differentiable functions $f$ in Rolle's theorem that have zero ends. Rolle's theorem is generalized by the mean value theorem by taking into account functions whose ends are not always zero.
The mean value theorem is a key finding in real analysis that is highly helpful for understanding how functions behave in higher mathematics. Before developing it logically as a general case of Rolle's Theorem and comprehending its significance, we will simply state the theorem.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
