
Let $f(x) = {x^2} + 4x + 1$. Then
A. $f(x) > 0$ for all $x$
B. $f(x) > 1$ when $x \geqslant 0$
C. $f(x) \geqslant 1$ when $x \leqslant - 4$
D. $f(x) = f( - x)$ for all $x$
Answer
163.8k+ views
Hint: Check whether each option is true one by one. Try to take small numbers to prove each option wrong and if it is not possible then find the range of x for the given inequality and check whether the option is true or false.
Formula used: If $f(x) = {x^2} + y + 2x + 3$ then $f(c) = {c^2} + y + 2c + 3$
Complete step-by-step solution:
We need to check whether each option is true one by one.
A. $f(x) > 0$ for all $x$
When $x = - 1$, $f( - 1) = 1 - 4 + 1 = - 2 < 0$
Therefore, $f(x) > 0$ for all $x$ is false.
B. $f(x) > 1$ when $x \geqslant 0$
When $x = 0$, $f(0) = 0 + 0 + 1 = 1$
Therefore, $f(x) > 1$ when $x \geqslant 0$ is false.
C. $f(x) \geqslant 1$ when $x \leqslant - 4$
${x^2} + 4x + 1 \geqslant 1$
$x(x + 4) \geqslant 0$
$x \in ( - \infty , - 4] \cup [0,\infty )$
Therefore, $f(x) \geqslant 1$ when $x \leqslant - 4$ is true.
Therefore, the correct answer is option C. $f(x) \geqslant 1$ when $x \leqslant - 4$.
Note: Since there is only one correct option, we need not check option D once we know that option C is correct. However, let us check option D as well to verify our answer. Let $x = 1$, $f(1) = 1 + 4 + 1 = 6$ while $f( - 1) = 1 - 4 + 1 = - 2$. Clearly $f(1) \ne f( - 1)$. Therefore, $f(x) = f( - x)$ for all $x$ is false.
Formula used: If $f(x) = {x^2} + y + 2x + 3$ then $f(c) = {c^2} + y + 2c + 3$
Complete step-by-step solution:
We need to check whether each option is true one by one.
A. $f(x) > 0$ for all $x$
When $x = - 1$, $f( - 1) = 1 - 4 + 1 = - 2 < 0$
Therefore, $f(x) > 0$ for all $x$ is false.
B. $f(x) > 1$ when $x \geqslant 0$
When $x = 0$, $f(0) = 0 + 0 + 1 = 1$
Therefore, $f(x) > 1$ when $x \geqslant 0$ is false.
C. $f(x) \geqslant 1$ when $x \leqslant - 4$
${x^2} + 4x + 1 \geqslant 1$
$x(x + 4) \geqslant 0$
$x \in ( - \infty , - 4] \cup [0,\infty )$
Therefore, $f(x) \geqslant 1$ when $x \leqslant - 4$ is true.
Therefore, the correct answer is option C. $f(x) \geqslant 1$ when $x \leqslant - 4$.
Note: Since there is only one correct option, we need not check option D once we know that option C is correct. However, let us check option D as well to verify our answer. Let $x = 1$, $f(1) = 1 + 4 + 1 = 6$ while $f( - 1) = 1 - 4 + 1 = - 2$. Clearly $f(1) \ne f( - 1)$. Therefore, $f(x) = f( - x)$ for all $x$ is false.
Recently Updated Pages
Trigonometry Formulas: Complete List, Table, and Quick Revision

Difference Between Distance and Displacement: JEE Main 2024

IIT Full Form

Uniform Acceleration - Definition, Equation, Examples, and FAQs

Difference Between Metals and Non-Metals: JEE Main 2024

Newton’s Laws of Motion – Definition, Principles, and Examples

Trending doubts
JEE Main Marks Vs Percentile Vs Rank 2025: Calculate Percentile Using Marks

JEE Mains 2025 Cutoff: Expected and Category-Wise Qualifying Marks for NITs, IIITs, and GFTIs

NIT Cutoff Percentile for 2025

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025 CutOff for NIT - Predicted Ranks and Scores

Other Pages
NCERT Solutions for Class 10 Maths Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related To Circles

NCERT Solutions for Class 10 Maths Chapter 12 Surface Area and Volume

NCERT Solutions for Class 10 Maths Chapter 14 Probability

NCERT Solutions for Class 10 Maths In Hindi Chapter 15 Probability

Total MBBS Seats in India 2025: Government and Private Medical Colleges
