
Let $f(x) = {x^2} + 4x + 1$. Then
A. $f(x) > 0$ for all $x$
B. $f(x) > 1$ when $x \geqslant 0$
C. $f(x) \geqslant 1$ when $x \leqslant - 4$
D. $f(x) = f( - x)$ for all $x$
Answer
163.2k+ views
Hint: Check whether each option is true one by one. Try to take small numbers to prove each option wrong and if it is not possible then find the range of x for the given inequality and check whether the option is true or false.
Formula used: If $f(x) = {x^2} + y + 2x + 3$ then $f(c) = {c^2} + y + 2c + 3$
Complete step-by-step solution:
We need to check whether each option is true one by one.
A. $f(x) > 0$ for all $x$
When $x = - 1$, $f( - 1) = 1 - 4 + 1 = - 2 < 0$
Therefore, $f(x) > 0$ for all $x$ is false.
B. $f(x) > 1$ when $x \geqslant 0$
When $x = 0$, $f(0) = 0 + 0 + 1 = 1$
Therefore, $f(x) > 1$ when $x \geqslant 0$ is false.
C. $f(x) \geqslant 1$ when $x \leqslant - 4$
${x^2} + 4x + 1 \geqslant 1$
$x(x + 4) \geqslant 0$
$x \in ( - \infty , - 4] \cup [0,\infty )$
Therefore, $f(x) \geqslant 1$ when $x \leqslant - 4$ is true.
Therefore, the correct answer is option C. $f(x) \geqslant 1$ when $x \leqslant - 4$.
Note: Since there is only one correct option, we need not check option D once we know that option C is correct. However, let us check option D as well to verify our answer. Let $x = 1$, $f(1) = 1 + 4 + 1 = 6$ while $f( - 1) = 1 - 4 + 1 = - 2$. Clearly $f(1) \ne f( - 1)$. Therefore, $f(x) = f( - x)$ for all $x$ is false.
Formula used: If $f(x) = {x^2} + y + 2x + 3$ then $f(c) = {c^2} + y + 2c + 3$
Complete step-by-step solution:
We need to check whether each option is true one by one.
A. $f(x) > 0$ for all $x$
When $x = - 1$, $f( - 1) = 1 - 4 + 1 = - 2 < 0$
Therefore, $f(x) > 0$ for all $x$ is false.
B. $f(x) > 1$ when $x \geqslant 0$
When $x = 0$, $f(0) = 0 + 0 + 1 = 1$
Therefore, $f(x) > 1$ when $x \geqslant 0$ is false.
C. $f(x) \geqslant 1$ when $x \leqslant - 4$
${x^2} + 4x + 1 \geqslant 1$
$x(x + 4) \geqslant 0$
$x \in ( - \infty , - 4] \cup [0,\infty )$
Therefore, $f(x) \geqslant 1$ when $x \leqslant - 4$ is true.
Therefore, the correct answer is option C. $f(x) \geqslant 1$ when $x \leqslant - 4$.
Note: Since there is only one correct option, we need not check option D once we know that option C is correct. However, let us check option D as well to verify our answer. Let $x = 1$, $f(1) = 1 + 4 + 1 = 6$ while $f( - 1) = 1 - 4 + 1 = - 2$. Clearly $f(1) \ne f( - 1)$. Therefore, $f(x) = f( - x)$ for all $x$ is false.
Recently Updated Pages
Difference Between Distance and Displacement: JEE Main 2024

IIT Full Form

Uniform Acceleration - Definition, Equation, Examples, and FAQs

Difference Between Metals and Non-Metals: JEE Main 2024

Newton’s Laws of Motion – Definition, Principles, and Examples

Difference Between Pound and Kilogram with Definitions, Relation

Trending doubts
JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

JEE Main Cut-Off for NIT Kurukshetra: All Important Details

JEE Mains 2025 Cut-Off GFIT: Check All Rounds Cutoff Ranks

Lami's Theorem

Other Pages
NCERT Solutions for Class 10 Maths Chapter 14 Probability

NCERT Solutions for Class 10 Maths In Hindi Chapter 15 Probability

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks
