
Let \[f\left( x \right) = {x^n}\], \[n\] being a positive integer. Then what is the value of \[n\] for which the equality \[f'\left( {a + b} \right) = f'\left( a \right) + f'\left( b \right)\], \[f\] is valid for all \[a,b > 0\]?
A. \[0, 2\]
B. \[1, 3\]
C. \[3,4\]
D. None of these
Answer
164.7k+ views
Hint: First, differentiate the given function with respect to \[x\]. Then substitute \[a,b\] and \[a + b\] in the differential equation instead of \[x\] to get the various differential equation. In the end, substitute these three differential equations in the given equality to get the required answer.
Formula Used: \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
Complete step by step solution:
The given function is \[f\left( x \right) = {x^n}\], \[n > 0\] and \[n\] satisfies the equality \[f'\left( {a + b} \right) = f'\left( a \right) + f'\left( b \right)\].
Let’s differentiate the given function with respect to \[x\].
\[f'\left( x \right) = n{x^{n - 1}}\]
Now substitute \[a,b\] and \[a + b\] in the above differential equation instead of \[x\].
\[f'\left( a \right) = n{\left( a \right)^{n - 1}}\]
\[f'\left( b \right) = n{\left( b \right)^{n - 1}}\]
\[f'\left( {a + b} \right) = n{\left( {a + b} \right)^{n - 1}}\]
Substitute the values of the above equations in the given inequality.
\[n{\left( {a + b} \right)^{n - 1}} = n{\left( a \right)^{n - 1}} + n{\left( b \right)^{n - 1}}\]
Cancel out the common factors from each side.
\[{\left( {a + b} \right)^{n - 1}} = {\left( a \right)^{n - 1}} + {\left( b \right)^{n - 1}}\] \[.....\left( 1 \right)\]
Now verify the values of \[n\].
Substitute \[n = 0\] in the equation \[\left( 1 \right)\].
\[{\left( {a + b} \right)^{0 - 1}} = {\left( a \right)^{0 - 1}} + {\left( b \right)^{0 - 1}}\]
\[ \Rightarrow \]\[\dfrac{1}{{a + b}} = \dfrac{1}{a} + \dfrac{1}{b}\]
\[ \Rightarrow \]\[\dfrac{1}{{a + b}} \ne \dfrac{{a + b}}{{ab}}\]
So, this value is incorrect.
Substitute \[n = 1\] in the equation \[\left( 1 \right)\].
\[{\left( {a + b} \right)^{1 - 1}} = {\left( a \right)^{1 - 1}} + {\left( b \right)^{1 - 1}}\]
\[ \Rightarrow \]\[{\left( {a + b} \right)^0} = {\left( a \right)^0} + {\left( b \right)^0}\]
\[ \Rightarrow \]\[1 = 1 + 1\]
\[ \Rightarrow \]\[1 \ne 2\]
So, this value is incorrect.
Substitute \[n = 2\] in the equation \[\left( 1 \right)\].
\[{\left( {a + b} \right)^{2 - 1}} = {\left( a \right)^{2 - 1}} + {\left( b \right)^{2 - 1}}\]
\[ \Rightarrow \]\[a + b = a + b\]
This is true.
So, this value is correct.
Substitute \[n = 3\] in the equation \[\left( 1 \right)\].
\[{\left( {a + b} \right)^{3 - 1}} = {\left( a \right)^{3 - 1}} + {\left( b \right)^{3 - 1}}\]
\[ \Rightarrow \]\[{\left( {a + b} \right)^2} = {\left( a \right)^2} + {\left( b \right)^2}\]
\[ \Rightarrow \]\[{a^2} + {b^2} + 2ab \ne {a^2} + {b^2}\]
So, this value is incorrect.
Substitute \[n = 4\] in the equation \[\left( 1 \right)\].
\[{\left( {a + b} \right)^{4 - 1}} = {\left( a \right)^{4 - 1}} + {\left( b \right)^{4 - 1}}\]
\[ \Rightarrow \]\[{\left( {a + b} \right)^3} = {\left( a \right)^3} + {\left( b \right)^3}\]
\[ \Rightarrow \]\[{a^3} + {b^3} + 3ab\left( {a + b} \right) \ne {a^3} + {b^3}\]
So, this value is incorrect.
Hence the correct option is D.
Note: Students often get confused with the formula of \[{\left( {a + b} \right)^3}\]. The correct formula is \[{\left( {a + b} \right)^3} = {a^3} + {b^3} + 3ab\left( {a + b} \right)\].
Formula Used: \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
Complete step by step solution:
The given function is \[f\left( x \right) = {x^n}\], \[n > 0\] and \[n\] satisfies the equality \[f'\left( {a + b} \right) = f'\left( a \right) + f'\left( b \right)\].
Let’s differentiate the given function with respect to \[x\].
\[f'\left( x \right) = n{x^{n - 1}}\]
Now substitute \[a,b\] and \[a + b\] in the above differential equation instead of \[x\].
\[f'\left( a \right) = n{\left( a \right)^{n - 1}}\]
\[f'\left( b \right) = n{\left( b \right)^{n - 1}}\]
\[f'\left( {a + b} \right) = n{\left( {a + b} \right)^{n - 1}}\]
Substitute the values of the above equations in the given inequality.
\[n{\left( {a + b} \right)^{n - 1}} = n{\left( a \right)^{n - 1}} + n{\left( b \right)^{n - 1}}\]
Cancel out the common factors from each side.
\[{\left( {a + b} \right)^{n - 1}} = {\left( a \right)^{n - 1}} + {\left( b \right)^{n - 1}}\] \[.....\left( 1 \right)\]
Now verify the values of \[n\].
Substitute \[n = 0\] in the equation \[\left( 1 \right)\].
\[{\left( {a + b} \right)^{0 - 1}} = {\left( a \right)^{0 - 1}} + {\left( b \right)^{0 - 1}}\]
\[ \Rightarrow \]\[\dfrac{1}{{a + b}} = \dfrac{1}{a} + \dfrac{1}{b}\]
\[ \Rightarrow \]\[\dfrac{1}{{a + b}} \ne \dfrac{{a + b}}{{ab}}\]
So, this value is incorrect.
Substitute \[n = 1\] in the equation \[\left( 1 \right)\].
\[{\left( {a + b} \right)^{1 - 1}} = {\left( a \right)^{1 - 1}} + {\left( b \right)^{1 - 1}}\]
\[ \Rightarrow \]\[{\left( {a + b} \right)^0} = {\left( a \right)^0} + {\left( b \right)^0}\]
\[ \Rightarrow \]\[1 = 1 + 1\]
\[ \Rightarrow \]\[1 \ne 2\]
So, this value is incorrect.
Substitute \[n = 2\] in the equation \[\left( 1 \right)\].
\[{\left( {a + b} \right)^{2 - 1}} = {\left( a \right)^{2 - 1}} + {\left( b \right)^{2 - 1}}\]
\[ \Rightarrow \]\[a + b = a + b\]
This is true.
So, this value is correct.
Substitute \[n = 3\] in the equation \[\left( 1 \right)\].
\[{\left( {a + b} \right)^{3 - 1}} = {\left( a \right)^{3 - 1}} + {\left( b \right)^{3 - 1}}\]
\[ \Rightarrow \]\[{\left( {a + b} \right)^2} = {\left( a \right)^2} + {\left( b \right)^2}\]
\[ \Rightarrow \]\[{a^2} + {b^2} + 2ab \ne {a^2} + {b^2}\]
So, this value is incorrect.
Substitute \[n = 4\] in the equation \[\left( 1 \right)\].
\[{\left( {a + b} \right)^{4 - 1}} = {\left( a \right)^{4 - 1}} + {\left( b \right)^{4 - 1}}\]
\[ \Rightarrow \]\[{\left( {a + b} \right)^3} = {\left( a \right)^3} + {\left( b \right)^3}\]
\[ \Rightarrow \]\[{a^3} + {b^3} + 3ab\left( {a + b} \right) \ne {a^3} + {b^3}\]
So, this value is incorrect.
Hence the correct option is D.
Note: Students often get confused with the formula of \[{\left( {a + b} \right)^3}\]. The correct formula is \[{\left( {a + b} \right)^3} = {a^3} + {b^3} + 3ab\left( {a + b} \right)\].
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced 2025 Notes

JEE Main Chemistry Question Paper with Answer Keys and Solutions
