
Let \[f\left( x \right) = {x^n}\], \[n\] being a positive integer. Then what is the value of \[n\] for which the equality \[f'\left( {a + b} \right) = f'\left( a \right) + f'\left( b \right)\], \[f\] is valid for all \[a,b > 0\]?
A. \[0, 2\]
B. \[1, 3\]
C. \[3,4\]
D. None of these
Answer
217.8k+ views
Hint: First, differentiate the given function with respect to \[x\]. Then substitute \[a,b\] and \[a + b\] in the differential equation instead of \[x\] to get the various differential equation. In the end, substitute these three differential equations in the given equality to get the required answer.
Formula Used: \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
Complete step by step solution:
The given function is \[f\left( x \right) = {x^n}\], \[n > 0\] and \[n\] satisfies the equality \[f'\left( {a + b} \right) = f'\left( a \right) + f'\left( b \right)\].
Let’s differentiate the given function with respect to \[x\].
\[f'\left( x \right) = n{x^{n - 1}}\]
Now substitute \[a,b\] and \[a + b\] in the above differential equation instead of \[x\].
\[f'\left( a \right) = n{\left( a \right)^{n - 1}}\]
\[f'\left( b \right) = n{\left( b \right)^{n - 1}}\]
\[f'\left( {a + b} \right) = n{\left( {a + b} \right)^{n - 1}}\]
Substitute the values of the above equations in the given inequality.
\[n{\left( {a + b} \right)^{n - 1}} = n{\left( a \right)^{n - 1}} + n{\left( b \right)^{n - 1}}\]
Cancel out the common factors from each side.
\[{\left( {a + b} \right)^{n - 1}} = {\left( a \right)^{n - 1}} + {\left( b \right)^{n - 1}}\] \[.....\left( 1 \right)\]
Now verify the values of \[n\].
Substitute \[n = 0\] in the equation \[\left( 1 \right)\].
\[{\left( {a + b} \right)^{0 - 1}} = {\left( a \right)^{0 - 1}} + {\left( b \right)^{0 - 1}}\]
\[ \Rightarrow \]\[\dfrac{1}{{a + b}} = \dfrac{1}{a} + \dfrac{1}{b}\]
\[ \Rightarrow \]\[\dfrac{1}{{a + b}} \ne \dfrac{{a + b}}{{ab}}\]
So, this value is incorrect.
Substitute \[n = 1\] in the equation \[\left( 1 \right)\].
\[{\left( {a + b} \right)^{1 - 1}} = {\left( a \right)^{1 - 1}} + {\left( b \right)^{1 - 1}}\]
\[ \Rightarrow \]\[{\left( {a + b} \right)^0} = {\left( a \right)^0} + {\left( b \right)^0}\]
\[ \Rightarrow \]\[1 = 1 + 1\]
\[ \Rightarrow \]\[1 \ne 2\]
So, this value is incorrect.
Substitute \[n = 2\] in the equation \[\left( 1 \right)\].
\[{\left( {a + b} \right)^{2 - 1}} = {\left( a \right)^{2 - 1}} + {\left( b \right)^{2 - 1}}\]
\[ \Rightarrow \]\[a + b = a + b\]
This is true.
So, this value is correct.
Substitute \[n = 3\] in the equation \[\left( 1 \right)\].
\[{\left( {a + b} \right)^{3 - 1}} = {\left( a \right)^{3 - 1}} + {\left( b \right)^{3 - 1}}\]
\[ \Rightarrow \]\[{\left( {a + b} \right)^2} = {\left( a \right)^2} + {\left( b \right)^2}\]
\[ \Rightarrow \]\[{a^2} + {b^2} + 2ab \ne {a^2} + {b^2}\]
So, this value is incorrect.
Substitute \[n = 4\] in the equation \[\left( 1 \right)\].
\[{\left( {a + b} \right)^{4 - 1}} = {\left( a \right)^{4 - 1}} + {\left( b \right)^{4 - 1}}\]
\[ \Rightarrow \]\[{\left( {a + b} \right)^3} = {\left( a \right)^3} + {\left( b \right)^3}\]
\[ \Rightarrow \]\[{a^3} + {b^3} + 3ab\left( {a + b} \right) \ne {a^3} + {b^3}\]
So, this value is incorrect.
Hence the correct option is D.
Note: Students often get confused with the formula of \[{\left( {a + b} \right)^3}\]. The correct formula is \[{\left( {a + b} \right)^3} = {a^3} + {b^3} + 3ab\left( {a + b} \right)\].
Formula Used: \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
Complete step by step solution:
The given function is \[f\left( x \right) = {x^n}\], \[n > 0\] and \[n\] satisfies the equality \[f'\left( {a + b} \right) = f'\left( a \right) + f'\left( b \right)\].
Let’s differentiate the given function with respect to \[x\].
\[f'\left( x \right) = n{x^{n - 1}}\]
Now substitute \[a,b\] and \[a + b\] in the above differential equation instead of \[x\].
\[f'\left( a \right) = n{\left( a \right)^{n - 1}}\]
\[f'\left( b \right) = n{\left( b \right)^{n - 1}}\]
\[f'\left( {a + b} \right) = n{\left( {a + b} \right)^{n - 1}}\]
Substitute the values of the above equations in the given inequality.
\[n{\left( {a + b} \right)^{n - 1}} = n{\left( a \right)^{n - 1}} + n{\left( b \right)^{n - 1}}\]
Cancel out the common factors from each side.
\[{\left( {a + b} \right)^{n - 1}} = {\left( a \right)^{n - 1}} + {\left( b \right)^{n - 1}}\] \[.....\left( 1 \right)\]
Now verify the values of \[n\].
Substitute \[n = 0\] in the equation \[\left( 1 \right)\].
\[{\left( {a + b} \right)^{0 - 1}} = {\left( a \right)^{0 - 1}} + {\left( b \right)^{0 - 1}}\]
\[ \Rightarrow \]\[\dfrac{1}{{a + b}} = \dfrac{1}{a} + \dfrac{1}{b}\]
\[ \Rightarrow \]\[\dfrac{1}{{a + b}} \ne \dfrac{{a + b}}{{ab}}\]
So, this value is incorrect.
Substitute \[n = 1\] in the equation \[\left( 1 \right)\].
\[{\left( {a + b} \right)^{1 - 1}} = {\left( a \right)^{1 - 1}} + {\left( b \right)^{1 - 1}}\]
\[ \Rightarrow \]\[{\left( {a + b} \right)^0} = {\left( a \right)^0} + {\left( b \right)^0}\]
\[ \Rightarrow \]\[1 = 1 + 1\]
\[ \Rightarrow \]\[1 \ne 2\]
So, this value is incorrect.
Substitute \[n = 2\] in the equation \[\left( 1 \right)\].
\[{\left( {a + b} \right)^{2 - 1}} = {\left( a \right)^{2 - 1}} + {\left( b \right)^{2 - 1}}\]
\[ \Rightarrow \]\[a + b = a + b\]
This is true.
So, this value is correct.
Substitute \[n = 3\] in the equation \[\left( 1 \right)\].
\[{\left( {a + b} \right)^{3 - 1}} = {\left( a \right)^{3 - 1}} + {\left( b \right)^{3 - 1}}\]
\[ \Rightarrow \]\[{\left( {a + b} \right)^2} = {\left( a \right)^2} + {\left( b \right)^2}\]
\[ \Rightarrow \]\[{a^2} + {b^2} + 2ab \ne {a^2} + {b^2}\]
So, this value is incorrect.
Substitute \[n = 4\] in the equation \[\left( 1 \right)\].
\[{\left( {a + b} \right)^{4 - 1}} = {\left( a \right)^{4 - 1}} + {\left( b \right)^{4 - 1}}\]
\[ \Rightarrow \]\[{\left( {a + b} \right)^3} = {\left( a \right)^3} + {\left( b \right)^3}\]
\[ \Rightarrow \]\[{a^3} + {b^3} + 3ab\left( {a + b} \right) \ne {a^3} + {b^3}\]
So, this value is incorrect.
Hence the correct option is D.
Note: Students often get confused with the formula of \[{\left( {a + b} \right)^3}\]. The correct formula is \[{\left( {a + b} \right)^3} = {a^3} + {b^3} + 3ab\left( {a + b} \right)\].
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

