
Let \[f\left( x \right) = \int {\dfrac{{\sqrt x }}{{{{\left( {1 + x} \right)}^2}}}dx} \], \[x \ge 0\]. Then find the value of \[f\left( 3 \right) - f\left( 1 \right)\].
A. \[ - \dfrac{\pi }{6} + \dfrac{1}{2} + \dfrac{{\sqrt 3 }}{4}\]
B. \[\dfrac{\pi }{6} + \dfrac{1}{2} - \dfrac{{\sqrt 3 }}{4}\]
C. \[ - \dfrac{\pi }{{12}} + \dfrac{1}{2} + \dfrac{{\sqrt 3 }}{4}\]
D. \[\dfrac{\pi }{{12}} + \dfrac{1}{2} - \dfrac{{\sqrt 3 }}{4}\]
Answer
216.6k+ views
Complete step by step solution
Given integration is
\[f\left( x \right) = \int {\dfrac{{\sqrt x }}{{{{\left( {1 + x} \right)}^2}}}dx} \]
Let \[x = {\tan ^2}\theta \]
Differentiate with respect to \[x\]
\[dx = 2\tan \theta {\sec ^2}\theta d\theta \]
Substitute \[x = {\tan ^2}\theta \] and \[dx = 2\tan \theta {\sec ^2}\theta d\theta \] in the integration \[f\left( x \right) = \int {\dfrac{{\sqrt x }}{{{{\left( {1 + x} \right)}^2}}}dx} \].
\[f\left( \theta \right) = \int {\dfrac{{\sqrt {{{\tan }^2}\theta } }}{{{{\left( {1 + {{\tan }^2}\theta } \right)}^2}}}2\tan \theta {{\sec }^2}\theta d\theta } \]
Now substitute \[1 + {\tan ^2}\theta = {\sec ^2}\theta \]
\[f\left( \theta \right) = \int {\dfrac{{\tan \theta }}{{{{\sec }^4}\theta }}2\tan \theta {{\sec }^2}\theta d\theta } \]
\[f\left( \theta \right) = 2\int {\dfrac{{{{\tan }^2}\theta }}{{{{\sec }^2}\theta }}d\theta } \]
Now putting \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\] and \[\sec \theta = \dfrac{1}{{\cos \theta }}\]
\[f\left( \theta \right) = 2\int {\dfrac{{\dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }}}}{{\dfrac{1}{{{{\cos }^2}\theta }}}}d\theta } \]
\[f\left( \theta \right) = 2\int {{{\sin }^2}\theta d\theta } \]
\[f\left( \theta \right) = \int {\left( {1 - \cos 2\theta } \right)d\theta } \]
Now putting \[x = 3\] in the equation \[x = {\tan ^2}\theta \].
\[3 = {\tan ^2}\theta \]
Taking square root both sides
\[\sqrt 3 = \tan \theta \]
\[\theta = \dfrac{\pi }{3}\]
Now putting \[x = 1\] in the equation \[x = {\tan ^2}\theta \].
\[1 = {\tan ^2}\theta \]
Taking square root both sides
\[1 = \tan \theta \]
\[\theta = \dfrac{\pi }{4}\]
Now we will apply the reverse formula \[\int\limits_a^b {f\left( x \right)dx} = \phi \left( b \right) - \phi \left( a \right)\].
\[f\left( {\dfrac{\pi }{3}} \right) - f\left( {\dfrac{\pi }{4}} \right) = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{\pi }{3}} {\left( {1 - \cos 2\theta } \right)d\theta } \]
\[ \Rightarrow f\left( {\dfrac{\pi }{3}} \right) - f\left( {\dfrac{\pi }{4}} \right) = \left[ {\theta - \dfrac{{\sin 2\theta }}{2}} \right]_{\dfrac{\pi }{4}}^{\dfrac{\pi }{3}}\]
\[ \Rightarrow f\left( {\dfrac{\pi }{3}} \right) - f\left( {\dfrac{\pi }{4}} \right) = \left[ {\dfrac{\pi }{3} - \dfrac{{\sin 2 \cdot \dfrac{\pi }{3}}}{2}} \right] - \left[ {\dfrac{\pi }{4} - \dfrac{{\sin 2 \cdot \dfrac{\pi }{4}}}{2}} \right]\]
\[ \Rightarrow f\left( {\dfrac{\pi }{3}} \right) - f\left( {\dfrac{\pi }{4}} \right) = \left[ {\dfrac{\pi }{3} - \dfrac{{\sin \dfrac{{2\pi }}{3}}}{2}} \right] - \left[ {\dfrac{\pi }{4} - \dfrac{{\sin \dfrac{\pi }{2}}}{2}} \right]\]
Putting \[\sin \dfrac{{2\pi }}{3} = \dfrac{{\sqrt 3 }}{2}\] and \[\sin \dfrac{\pi }{2} = 1\]
\[ \Rightarrow f\left( {\dfrac{\pi }{3}} \right) - f\left( {\dfrac{\pi }{4}} \right) = \dfrac{\pi }{3} - \dfrac{{\sqrt 3 }}{4} - \dfrac{\pi }{4} + \dfrac{1}{2}\]
\[ \Rightarrow f\left( {\dfrac{\pi }{3}} \right) - f\left( {\dfrac{\pi }{4}} \right) = \dfrac{{4\pi - 3\pi }}{{12}} - \dfrac{{\sqrt 3 }}{4} + \dfrac{1}{2}\]
\[ \Rightarrow f\left( {\dfrac{\pi }{3}} \right) - f\left( {\dfrac{\pi }{4}} \right) = \dfrac{\pi }{{12}} - \dfrac{{\sqrt 3 }}{4} + \dfrac{1}{2}\]
So the value of \[f\left( 3 \right) - f\left( 1 \right)\] is \[\dfrac{\pi }{{12}} + \dfrac{1}{2} - \dfrac{{\sqrt 3 }}{4}\].
Hence option D is the correct option.
Note: Students often make common mistakes when they start to solve the integration without using a substitute method. They calculate the value \[f\left( 3 \right) - f\left( 1 \right)\] by substituting \[x = 3\] and \[x = 1\] in the integration.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

