
Let \[f:\left[ { - 3,1} \right] \to \mathbb{R}\] be given as
\[f\left( x \right) = \left\{ \begin{array}{l}\min \left\{ {x + 6,{x^2}} \right\}, - 3 \le x \le 0\\\max \left\{ {\sqrt x ,{x^2}} \right\},0 \le x \le 1\end{array} \right.\]
If the area bounded by \[y = f\left( x \right)\] and \[x\]-axis is \[A\], then find the value of \[6A\].
Answer
232.8k+ views
Hint: Find the point(s) of intersection of the curves \[y = x + 6\] and \[y = {x^2}\] over the interval \[\left[ { - 3,0} \right]\]. It will be at \[\left( { - 2,4} \right)\]. Then divide the interval \[\left[ { - 3,0} \right]\] into two subintervals \[\left[ { - 3, - 2} \right)\] and \[\left( { - 2,0} \right]\] and check which of the functions \[y = x + 6\] and \[y = {x^2}\] takes minimum value on the subintervals \[\left[ { - 3, - 2} \right)\] and \[\left( { - 2,0} \right]\]. Thus find \[\min \left\{ {x + 6,{x^2}} \right\}\] over the interval \[\left[ { - 3,0} \right]\]. After that find the point(s) of intersection of the curves \[y = \sqrt x \] and \[y = {x^2}\] over the interval \[\left[ {0,1} \right]\]. It will be at \[\left( {0,0} \right)\] and \[\left( {1,1} \right)\] and hence find \[\max \left\{ {\sqrt x ,{x^2}} \right\}\] over the interval \[\left[ {0,1} \right]\]. Finally, you’ll obtain \[\min \left\{ {x + 6,{x^2}} \right\} = x + 6\] over the interval \[\left[ { - 3, - 2} \right)\],\[\min \left\{ {x + 6,{x^2}} \right\} = {x^2}\] over the interval \[\left( { - 2,0} \right]\] and \[\max \left\{ {\sqrt x ,{x^2}} \right\} = \sqrt x \] over the interval \[\left[ {0,1} \right]\]. Then find the area \[A\] using the formula of finding area using definite integral.
Formula Used:
Area of the region bounded by \[y = f\left( x \right)\] and \[x\]-axis within the interval \[\left[ {a,b} \right]\] is \[A = \int_a^b {f\left( x \right)dx} \]
\[{a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\]
\[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C} \], where \[C\] is integrating constant.
Complete step by step solution:
The given function is
\[f\left( x \right) = \left\{ \begin{array}{l}\min \left\{ {x + 6,{x^2}} \right\}, - 3 \le x \le 0\\\max \left\{ {\sqrt x ,{x^2}} \right\},0 \le x \le 1\end{array} \right.\]
Let us find \[\min \left\{ {x + 6,{x^2}} \right\}\] over the interval \[\left[ { - 3,0} \right]\].
First of all, let us find the point of intersection of the curves \[y = x + 6\] and \[y = {x^2}\]
At the point of intersection, \[x + 6 = {x^2}\]
\[ \Rightarrow {x^2} = x + 6\]
\[ \Rightarrow {x^2} - x - 6 = 0\]
\[ \Rightarrow {x^2} - 3x + 2x - 6 = 0\]
\[ \Rightarrow x\left( {x - 3} \right) + 2\left( {x - 3} \right) = 0\]
\[ \Rightarrow \left( {x - 3} \right)\left( {x + 2} \right) = 0\]
\[ \Rightarrow \left( {x - 3} \right) = 0\] or \[\left( {x + 2} \right) = 0\]
\[ \Rightarrow x = 3\] or \[x = - 2\]
\[3 \notin \left[ { - 3,0} \right]\] but \[ - 2 \in \left[ { - 3,0} \right]\]
At \[x = - 2\], \[y = 4\]
So, the two curves meet at the point \[\left( { - 2,4} \right)\] on the interval \[\left[ { - 3,0} \right]\].
Let us divide the interval \[\left[ { - 3,0} \right]\] into two subintervals \[\left[ { - 3, - 2} \right)\] and \[\left( { - 2,0} \right]\].
Let us check which of the functions \[y = x + 6\] and \[y = {x^2}\] takes minimum value on the subinterval \[\left[ { - 3, - 2} \right)\].
Let \[x = - 3\].
Then the functional value of the function \[y = x + 6\] at \[x = - 3\] is \[y = - 3 + 6 = 3\]
And the functional value of the function \[y = {x^2}\] at \[x = - 3\] is \[y = {\left( { - 3} \right)^2} = 9\]
\[\therefore \min \left\{ {x + 6,{x^2}} \right\} = x + 6\] over the interval \[\left[ { - 3, - 2} \right)\].
Now, let us check which of the functions \[y = x + 6\] and \[y = {x^2}\] takes minimum value on the subinterval \[\left( { - 2,0} \right]\].
Let \[x = - 1\].
Then the functional value of the function \[y = x + 6\] at \[x = - 1\] is \[y = - 1 + 6 = 5\]
And the functional value of the function \[y = {x^2}\] at \[x = - 1\] is \[y = {\left( { - 1} \right)^2} = 1\]
\[\therefore \min \left\{ {x + 6,{x^2}} \right\} = {x^2}\] over the interval \[\left( { - 2,0} \right]\].
Let us find \[\max \left\{ {\sqrt x ,{x^2}} \right\}\] over the interval \[\left[ {0,1} \right]\].
First of all, let us find the point of intersection of the curves \[y = \sqrt x \] and \[y = {x^2}\]
At the point of intersection, \[\sqrt x = {x^2}\]
Squaring both sides, we get \[x = {x^4}\]
\[ \Rightarrow {x^4} - x = 0\]
Take \[x\] common from left-hand-side
\[ \Rightarrow x\left( {{x^3} - 1} \right) = 0\]
\[ \Rightarrow x = 0\] or \[\left( {{x^3} - 1} \right) = 0\]
Use the identity \[{a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\]
\[\therefore {x^3} - 1 = \left( {x - 1} \right)\left( {{x^2} + x + 1} \right)\]
\[\left( {{x^3} - 1} \right) = 0\]
\[ \Rightarrow \left( {x - 1} \right)\left( {{x^2} + x + 1} \right) = 0\]
\[ \Rightarrow \left( {x - 1} \right) = 0\] or \[\left( {{x^2} + x + 1} \right) = 0\]
\[ \Rightarrow x = 1\]
Discriminant of the quadratic equation \[{x^2} + x + 1 = 0\] is \[D = {\left( 1 \right)^2} - 4\left( 1 \right)\left( 1 \right) = 1 - 4 = - 3 < 0\]
So, it has no real roots.
\[\therefore \]The roots of the equation \[\sqrt x = {x^2}\] are \[0,1\].
\[0 \in \left[ {0,1} \right]\] and \[1 \in \left[ {0,1} \right]\]
At \[x = 0\], \[y = 0\]
At \[x = 1\], \[y = 1\]
So, the two curves meet at the points \[\left( {0,0} \right)\] and \[\left( {1,1} \right)\] on the interval \[\left[ {0,1} \right]\].
Let us check which of the functions \[y = \sqrt x \] and \[y = {x^2}\] takes maximum value on the interval \[\left[ {0,1} \right]\].
Let us take \[x = \dfrac{1}{2} \in \left[ {0,1} \right]\]
Then the functional value of the function \[y = \sqrt x \] at \[x = \dfrac{1}{2}\] is \[y = \dfrac{1}{{\sqrt 2 }}\]
And the functional value of the function \[y = {x^2}\] at \[x = \dfrac{1}{2}\] is \[y = {\left( {\dfrac{1}{2}} \right)^2} = \dfrac{1}{4}\]
\[\therefore \max \left\{ {\sqrt x ,{x^2}} \right\} = \sqrt x \] over the interval \[\left[ {0,1} \right]\].
Finally, we get
\[\min \left\{ {x + 6,{x^2}} \right\} = x + 6\] over the interval \[\left[ { - 3, - 2} \right)\]
\[\min \left\{ {x + 6,{x^2}} \right\} = {x^2}\] over the interval \[\left( { - 2,0} \right]\]
\[\max \left\{ {\sqrt x ,{x^2}} \right\} = \sqrt x \] over the interval \[\left[ {0,1} \right]\]
Now, the required area is \[\int\limits_{ - 3}^1 {f\left( x \right)dx} \]
\[ = \int\limits_{ - 3}^{ - 2} {\left( {x + 6} \right)dx + } \int\limits_{ - 2}^0 {\left( {{x^2}} \right)dx + \int\limits_0^1 {\left( {\sqrt x } \right)dx} } \]
Use the formula \[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C} \], where \[C\] is integrating constant.
\[\int\limits_{ - 3}^{ - 2} {\left( {x + 6} \right)dx} = \int\limits_{ - 3}^{ - 2} {xdx} + 6\int\limits_{ - 3}^{ - 2} {dx} \]
\[ = \left[ {\dfrac{{{x^2}}}{2}} \right]_{ - 3}^{ - 2} + 6\left[ x \right]_{ - 3}^{ - 2}\]
\[ = \left\{ {\dfrac{{{{\left( { - 2} \right)}^2}}}{2} - \dfrac{{{{\left( { - 3} \right)}^2}}}{2}} \right\} + 6\left\{ {\left( { - 2} \right) - \left( { - 3} \right)} \right\}\]
\[ = \left( {2 - \dfrac{9}{2}} \right) + 6\left( { - 2 + 3} \right)\]
\[ = - \dfrac{5}{2} + 6\]
\[ = \dfrac{7}{2}\]
\[\int\limits_{ - 2}^0 {\left( {{x^2}} \right)dx} = \left[ {\dfrac{{{x^3}}}{3}} \right]_{ - 2}^0 = \left\{ {\dfrac{{{{\left( 0 \right)}^3}}}{3} - \dfrac{{{{\left( { - 2} \right)}^3}}}{3}} \right\} = 0 - \dfrac{{ - 8}}{3} = \dfrac{8}{3}\]
\[\int_{ - 2}^0 {\left( {{x^2}} \right)dx} = \left[ {\dfrac{{{x^{\dfrac{3}{2}}}}}{{\dfrac{3}{2}}}} \right]_0^1 = \dfrac{2}{3}\left[ {{x^{\dfrac{3}{2}}}} \right]_0^1 = \dfrac{2}{3}\left[ {{1^{\dfrac{3}{2}}} - {0^{\dfrac{3}{2}}}} \right] = \dfrac{2}{3}\]
\[\therefore A = \dfrac{7}{2} + \dfrac{8}{3} + \dfrac{2}{3} = \dfrac{{21 + 16 + 4}}{6} = \dfrac{{41}}{6}\]
\[ \Rightarrow 6A = 41\]
Hence the required value is \[41\].
Note:The given function is a multi-valued function defined on the interval \[\left[ { - 3,1} \right]\]. The function takes different forms over the intervals \[\left[ { - 3,0} \right]\] and \[\left[ {0,1} \right]\]. You have to find \[\min \left\{ {x + 6,{x^2}} \right\}\] over the interval \[\left[ { - 3,0} \right]\] and \[\max \left\{ {\sqrt x ,{x^2}} \right\}\] over the interval \[\left[ {0,1} \right]\] very carefully.
Formula Used:
Area of the region bounded by \[y = f\left( x \right)\] and \[x\]-axis within the interval \[\left[ {a,b} \right]\] is \[A = \int_a^b {f\left( x \right)dx} \]
\[{a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\]
\[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C} \], where \[C\] is integrating constant.
Complete step by step solution:
The given function is
\[f\left( x \right) = \left\{ \begin{array}{l}\min \left\{ {x + 6,{x^2}} \right\}, - 3 \le x \le 0\\\max \left\{ {\sqrt x ,{x^2}} \right\},0 \le x \le 1\end{array} \right.\]
Let us find \[\min \left\{ {x + 6,{x^2}} \right\}\] over the interval \[\left[ { - 3,0} \right]\].
First of all, let us find the point of intersection of the curves \[y = x + 6\] and \[y = {x^2}\]
At the point of intersection, \[x + 6 = {x^2}\]
\[ \Rightarrow {x^2} = x + 6\]
\[ \Rightarrow {x^2} - x - 6 = 0\]
\[ \Rightarrow {x^2} - 3x + 2x - 6 = 0\]
\[ \Rightarrow x\left( {x - 3} \right) + 2\left( {x - 3} \right) = 0\]
\[ \Rightarrow \left( {x - 3} \right)\left( {x + 2} \right) = 0\]
\[ \Rightarrow \left( {x - 3} \right) = 0\] or \[\left( {x + 2} \right) = 0\]
\[ \Rightarrow x = 3\] or \[x = - 2\]
\[3 \notin \left[ { - 3,0} \right]\] but \[ - 2 \in \left[ { - 3,0} \right]\]
At \[x = - 2\], \[y = 4\]
So, the two curves meet at the point \[\left( { - 2,4} \right)\] on the interval \[\left[ { - 3,0} \right]\].
Let us divide the interval \[\left[ { - 3,0} \right]\] into two subintervals \[\left[ { - 3, - 2} \right)\] and \[\left( { - 2,0} \right]\].
Let us check which of the functions \[y = x + 6\] and \[y = {x^2}\] takes minimum value on the subinterval \[\left[ { - 3, - 2} \right)\].
Let \[x = - 3\].
Then the functional value of the function \[y = x + 6\] at \[x = - 3\] is \[y = - 3 + 6 = 3\]
And the functional value of the function \[y = {x^2}\] at \[x = - 3\] is \[y = {\left( { - 3} \right)^2} = 9\]
\[\therefore \min \left\{ {x + 6,{x^2}} \right\} = x + 6\] over the interval \[\left[ { - 3, - 2} \right)\].
Now, let us check which of the functions \[y = x + 6\] and \[y = {x^2}\] takes minimum value on the subinterval \[\left( { - 2,0} \right]\].
Let \[x = - 1\].
Then the functional value of the function \[y = x + 6\] at \[x = - 1\] is \[y = - 1 + 6 = 5\]
And the functional value of the function \[y = {x^2}\] at \[x = - 1\] is \[y = {\left( { - 1} \right)^2} = 1\]
\[\therefore \min \left\{ {x + 6,{x^2}} \right\} = {x^2}\] over the interval \[\left( { - 2,0} \right]\].
Let us find \[\max \left\{ {\sqrt x ,{x^2}} \right\}\] over the interval \[\left[ {0,1} \right]\].
First of all, let us find the point of intersection of the curves \[y = \sqrt x \] and \[y = {x^2}\]
At the point of intersection, \[\sqrt x = {x^2}\]
Squaring both sides, we get \[x = {x^4}\]
\[ \Rightarrow {x^4} - x = 0\]
Take \[x\] common from left-hand-side
\[ \Rightarrow x\left( {{x^3} - 1} \right) = 0\]
\[ \Rightarrow x = 0\] or \[\left( {{x^3} - 1} \right) = 0\]
Use the identity \[{a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\]
\[\therefore {x^3} - 1 = \left( {x - 1} \right)\left( {{x^2} + x + 1} \right)\]
\[\left( {{x^3} - 1} \right) = 0\]
\[ \Rightarrow \left( {x - 1} \right)\left( {{x^2} + x + 1} \right) = 0\]
\[ \Rightarrow \left( {x - 1} \right) = 0\] or \[\left( {{x^2} + x + 1} \right) = 0\]
\[ \Rightarrow x = 1\]
Discriminant of the quadratic equation \[{x^2} + x + 1 = 0\] is \[D = {\left( 1 \right)^2} - 4\left( 1 \right)\left( 1 \right) = 1 - 4 = - 3 < 0\]
So, it has no real roots.
\[\therefore \]The roots of the equation \[\sqrt x = {x^2}\] are \[0,1\].
\[0 \in \left[ {0,1} \right]\] and \[1 \in \left[ {0,1} \right]\]
At \[x = 0\], \[y = 0\]
At \[x = 1\], \[y = 1\]
So, the two curves meet at the points \[\left( {0,0} \right)\] and \[\left( {1,1} \right)\] on the interval \[\left[ {0,1} \right]\].
Let us check which of the functions \[y = \sqrt x \] and \[y = {x^2}\] takes maximum value on the interval \[\left[ {0,1} \right]\].
Let us take \[x = \dfrac{1}{2} \in \left[ {0,1} \right]\]
Then the functional value of the function \[y = \sqrt x \] at \[x = \dfrac{1}{2}\] is \[y = \dfrac{1}{{\sqrt 2 }}\]
And the functional value of the function \[y = {x^2}\] at \[x = \dfrac{1}{2}\] is \[y = {\left( {\dfrac{1}{2}} \right)^2} = \dfrac{1}{4}\]
\[\therefore \max \left\{ {\sqrt x ,{x^2}} \right\} = \sqrt x \] over the interval \[\left[ {0,1} \right]\].
Finally, we get
\[\min \left\{ {x + 6,{x^2}} \right\} = x + 6\] over the interval \[\left[ { - 3, - 2} \right)\]
\[\min \left\{ {x + 6,{x^2}} \right\} = {x^2}\] over the interval \[\left( { - 2,0} \right]\]
\[\max \left\{ {\sqrt x ,{x^2}} \right\} = \sqrt x \] over the interval \[\left[ {0,1} \right]\]
Now, the required area is \[\int\limits_{ - 3}^1 {f\left( x \right)dx} \]
\[ = \int\limits_{ - 3}^{ - 2} {\left( {x + 6} \right)dx + } \int\limits_{ - 2}^0 {\left( {{x^2}} \right)dx + \int\limits_0^1 {\left( {\sqrt x } \right)dx} } \]
Use the formula \[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C} \], where \[C\] is integrating constant.
\[\int\limits_{ - 3}^{ - 2} {\left( {x + 6} \right)dx} = \int\limits_{ - 3}^{ - 2} {xdx} + 6\int\limits_{ - 3}^{ - 2} {dx} \]
\[ = \left[ {\dfrac{{{x^2}}}{2}} \right]_{ - 3}^{ - 2} + 6\left[ x \right]_{ - 3}^{ - 2}\]
\[ = \left\{ {\dfrac{{{{\left( { - 2} \right)}^2}}}{2} - \dfrac{{{{\left( { - 3} \right)}^2}}}{2}} \right\} + 6\left\{ {\left( { - 2} \right) - \left( { - 3} \right)} \right\}\]
\[ = \left( {2 - \dfrac{9}{2}} \right) + 6\left( { - 2 + 3} \right)\]
\[ = - \dfrac{5}{2} + 6\]
\[ = \dfrac{7}{2}\]
\[\int\limits_{ - 2}^0 {\left( {{x^2}} \right)dx} = \left[ {\dfrac{{{x^3}}}{3}} \right]_{ - 2}^0 = \left\{ {\dfrac{{{{\left( 0 \right)}^3}}}{3} - \dfrac{{{{\left( { - 2} \right)}^3}}}{3}} \right\} = 0 - \dfrac{{ - 8}}{3} = \dfrac{8}{3}\]
\[\int_{ - 2}^0 {\left( {{x^2}} \right)dx} = \left[ {\dfrac{{{x^{\dfrac{3}{2}}}}}{{\dfrac{3}{2}}}} \right]_0^1 = \dfrac{2}{3}\left[ {{x^{\dfrac{3}{2}}}} \right]_0^1 = \dfrac{2}{3}\left[ {{1^{\dfrac{3}{2}}} - {0^{\dfrac{3}{2}}}} \right] = \dfrac{2}{3}\]
\[\therefore A = \dfrac{7}{2} + \dfrac{8}{3} + \dfrac{2}{3} = \dfrac{{21 + 16 + 4}}{6} = \dfrac{{41}}{6}\]
\[ \Rightarrow 6A = 41\]
Hence the required value is \[41\].
Note:The given function is a multi-valued function defined on the interval \[\left[ { - 3,1} \right]\]. The function takes different forms over the intervals \[\left[ { - 3,0} \right]\] and \[\left[ {0,1} \right]\]. You have to find \[\min \left\{ {x + 6,{x^2}} \right\}\] over the interval \[\left[ { - 3,0} \right]\] and \[\max \left\{ {\sqrt x ,{x^2}} \right\}\] over the interval \[\left[ {0,1} \right]\] very carefully.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Inductive Effect and Its Role in Acidic Strength

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

