
Let \[f:\left[ { - 3,1} \right] \to \mathbb{R}\] be given as
\[f\left( x \right) = \left\{ \begin{array}{l}\min \left\{ {x + 6,{x^2}} \right\}, - 3 \le x \le 0\\\max \left\{ {\sqrt x ,{x^2}} \right\},0 \le x \le 1\end{array} \right.\]
If the area bounded by \[y = f\left( x \right)\] and \[x\]-axis is \[A\], then find the value of \[6A\].
Answer
162.9k+ views
Hint: Find the point(s) of intersection of the curves \[y = x + 6\] and \[y = {x^2}\] over the interval \[\left[ { - 3,0} \right]\]. It will be at \[\left( { - 2,4} \right)\]. Then divide the interval \[\left[ { - 3,0} \right]\] into two subintervals \[\left[ { - 3, - 2} \right)\] and \[\left( { - 2,0} \right]\] and check which of the functions \[y = x + 6\] and \[y = {x^2}\] takes minimum value on the subintervals \[\left[ { - 3, - 2} \right)\] and \[\left( { - 2,0} \right]\]. Thus find \[\min \left\{ {x + 6,{x^2}} \right\}\] over the interval \[\left[ { - 3,0} \right]\]. After that find the point(s) of intersection of the curves \[y = \sqrt x \] and \[y = {x^2}\] over the interval \[\left[ {0,1} \right]\]. It will be at \[\left( {0,0} \right)\] and \[\left( {1,1} \right)\] and hence find \[\max \left\{ {\sqrt x ,{x^2}} \right\}\] over the interval \[\left[ {0,1} \right]\]. Finally, you’ll obtain \[\min \left\{ {x + 6,{x^2}} \right\} = x + 6\] over the interval \[\left[ { - 3, - 2} \right)\],\[\min \left\{ {x + 6,{x^2}} \right\} = {x^2}\] over the interval \[\left( { - 2,0} \right]\] and \[\max \left\{ {\sqrt x ,{x^2}} \right\} = \sqrt x \] over the interval \[\left[ {0,1} \right]\]. Then find the area \[A\] using the formula of finding area using definite integral.
Formula Used:
Area of the region bounded by \[y = f\left( x \right)\] and \[x\]-axis within the interval \[\left[ {a,b} \right]\] is \[A = \int_a^b {f\left( x \right)dx} \]
\[{a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\]
\[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C} \], where \[C\] is integrating constant.
Complete step by step solution:
The given function is
\[f\left( x \right) = \left\{ \begin{array}{l}\min \left\{ {x + 6,{x^2}} \right\}, - 3 \le x \le 0\\\max \left\{ {\sqrt x ,{x^2}} \right\},0 \le x \le 1\end{array} \right.\]
Let us find \[\min \left\{ {x + 6,{x^2}} \right\}\] over the interval \[\left[ { - 3,0} \right]\].
First of all, let us find the point of intersection of the curves \[y = x + 6\] and \[y = {x^2}\]
At the point of intersection, \[x + 6 = {x^2}\]
\[ \Rightarrow {x^2} = x + 6\]
\[ \Rightarrow {x^2} - x - 6 = 0\]
\[ \Rightarrow {x^2} - 3x + 2x - 6 = 0\]
\[ \Rightarrow x\left( {x - 3} \right) + 2\left( {x - 3} \right) = 0\]
\[ \Rightarrow \left( {x - 3} \right)\left( {x + 2} \right) = 0\]
\[ \Rightarrow \left( {x - 3} \right) = 0\] or \[\left( {x + 2} \right) = 0\]
\[ \Rightarrow x = 3\] or \[x = - 2\]
\[3 \notin \left[ { - 3,0} \right]\] but \[ - 2 \in \left[ { - 3,0} \right]\]
At \[x = - 2\], \[y = 4\]
So, the two curves meet at the point \[\left( { - 2,4} \right)\] on the interval \[\left[ { - 3,0} \right]\].
Let us divide the interval \[\left[ { - 3,0} \right]\] into two subintervals \[\left[ { - 3, - 2} \right)\] and \[\left( { - 2,0} \right]\].
Let us check which of the functions \[y = x + 6\] and \[y = {x^2}\] takes minimum value on the subinterval \[\left[ { - 3, - 2} \right)\].
Let \[x = - 3\].
Then the functional value of the function \[y = x + 6\] at \[x = - 3\] is \[y = - 3 + 6 = 3\]
And the functional value of the function \[y = {x^2}\] at \[x = - 3\] is \[y = {\left( { - 3} \right)^2} = 9\]
\[\therefore \min \left\{ {x + 6,{x^2}} \right\} = x + 6\] over the interval \[\left[ { - 3, - 2} \right)\].
Now, let us check which of the functions \[y = x + 6\] and \[y = {x^2}\] takes minimum value on the subinterval \[\left( { - 2,0} \right]\].
Let \[x = - 1\].
Then the functional value of the function \[y = x + 6\] at \[x = - 1\] is \[y = - 1 + 6 = 5\]
And the functional value of the function \[y = {x^2}\] at \[x = - 1\] is \[y = {\left( { - 1} \right)^2} = 1\]
\[\therefore \min \left\{ {x + 6,{x^2}} \right\} = {x^2}\] over the interval \[\left( { - 2,0} \right]\].
Let us find \[\max \left\{ {\sqrt x ,{x^2}} \right\}\] over the interval \[\left[ {0,1} \right]\].
First of all, let us find the point of intersection of the curves \[y = \sqrt x \] and \[y = {x^2}\]
At the point of intersection, \[\sqrt x = {x^2}\]
Squaring both sides, we get \[x = {x^4}\]
\[ \Rightarrow {x^4} - x = 0\]
Take \[x\] common from left-hand-side
\[ \Rightarrow x\left( {{x^3} - 1} \right) = 0\]
\[ \Rightarrow x = 0\] or \[\left( {{x^3} - 1} \right) = 0\]
Use the identity \[{a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\]
\[\therefore {x^3} - 1 = \left( {x - 1} \right)\left( {{x^2} + x + 1} \right)\]
\[\left( {{x^3} - 1} \right) = 0\]
\[ \Rightarrow \left( {x - 1} \right)\left( {{x^2} + x + 1} \right) = 0\]
\[ \Rightarrow \left( {x - 1} \right) = 0\] or \[\left( {{x^2} + x + 1} \right) = 0\]
\[ \Rightarrow x = 1\]
Discriminant of the quadratic equation \[{x^2} + x + 1 = 0\] is \[D = {\left( 1 \right)^2} - 4\left( 1 \right)\left( 1 \right) = 1 - 4 = - 3 < 0\]
So, it has no real roots.
\[\therefore \]The roots of the equation \[\sqrt x = {x^2}\] are \[0,1\].
\[0 \in \left[ {0,1} \right]\] and \[1 \in \left[ {0,1} \right]\]
At \[x = 0\], \[y = 0\]
At \[x = 1\], \[y = 1\]
So, the two curves meet at the points \[\left( {0,0} \right)\] and \[\left( {1,1} \right)\] on the interval \[\left[ {0,1} \right]\].
Let us check which of the functions \[y = \sqrt x \] and \[y = {x^2}\] takes maximum value on the interval \[\left[ {0,1} \right]\].
Let us take \[x = \dfrac{1}{2} \in \left[ {0,1} \right]\]
Then the functional value of the function \[y = \sqrt x \] at \[x = \dfrac{1}{2}\] is \[y = \dfrac{1}{{\sqrt 2 }}\]
And the functional value of the function \[y = {x^2}\] at \[x = \dfrac{1}{2}\] is \[y = {\left( {\dfrac{1}{2}} \right)^2} = \dfrac{1}{4}\]
\[\therefore \max \left\{ {\sqrt x ,{x^2}} \right\} = \sqrt x \] over the interval \[\left[ {0,1} \right]\].
Finally, we get
\[\min \left\{ {x + 6,{x^2}} \right\} = x + 6\] over the interval \[\left[ { - 3, - 2} \right)\]
\[\min \left\{ {x + 6,{x^2}} \right\} = {x^2}\] over the interval \[\left( { - 2,0} \right]\]
\[\max \left\{ {\sqrt x ,{x^2}} \right\} = \sqrt x \] over the interval \[\left[ {0,1} \right]\]
Now, the required area is \[\int\limits_{ - 3}^1 {f\left( x \right)dx} \]
\[ = \int\limits_{ - 3}^{ - 2} {\left( {x + 6} \right)dx + } \int\limits_{ - 2}^0 {\left( {{x^2}} \right)dx + \int\limits_0^1 {\left( {\sqrt x } \right)dx} } \]
Use the formula \[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C} \], where \[C\] is integrating constant.
\[\int\limits_{ - 3}^{ - 2} {\left( {x + 6} \right)dx} = \int\limits_{ - 3}^{ - 2} {xdx} + 6\int\limits_{ - 3}^{ - 2} {dx} \]
\[ = \left[ {\dfrac{{{x^2}}}{2}} \right]_{ - 3}^{ - 2} + 6\left[ x \right]_{ - 3}^{ - 2}\]
\[ = \left\{ {\dfrac{{{{\left( { - 2} \right)}^2}}}{2} - \dfrac{{{{\left( { - 3} \right)}^2}}}{2}} \right\} + 6\left\{ {\left( { - 2} \right) - \left( { - 3} \right)} \right\}\]
\[ = \left( {2 - \dfrac{9}{2}} \right) + 6\left( { - 2 + 3} \right)\]
\[ = - \dfrac{5}{2} + 6\]
\[ = \dfrac{7}{2}\]
\[\int\limits_{ - 2}^0 {\left( {{x^2}} \right)dx} = \left[ {\dfrac{{{x^3}}}{3}} \right]_{ - 2}^0 = \left\{ {\dfrac{{{{\left( 0 \right)}^3}}}{3} - \dfrac{{{{\left( { - 2} \right)}^3}}}{3}} \right\} = 0 - \dfrac{{ - 8}}{3} = \dfrac{8}{3}\]
\[\int_{ - 2}^0 {\left( {{x^2}} \right)dx} = \left[ {\dfrac{{{x^{\dfrac{3}{2}}}}}{{\dfrac{3}{2}}}} \right]_0^1 = \dfrac{2}{3}\left[ {{x^{\dfrac{3}{2}}}} \right]_0^1 = \dfrac{2}{3}\left[ {{1^{\dfrac{3}{2}}} - {0^{\dfrac{3}{2}}}} \right] = \dfrac{2}{3}\]
\[\therefore A = \dfrac{7}{2} + \dfrac{8}{3} + \dfrac{2}{3} = \dfrac{{21 + 16 + 4}}{6} = \dfrac{{41}}{6}\]
\[ \Rightarrow 6A = 41\]
Hence the required value is \[41\].
Note:The given function is a multi-valued function defined on the interval \[\left[ { - 3,1} \right]\]. The function takes different forms over the intervals \[\left[ { - 3,0} \right]\] and \[\left[ {0,1} \right]\]. You have to find \[\min \left\{ {x + 6,{x^2}} \right\}\] over the interval \[\left[ { - 3,0} \right]\] and \[\max \left\{ {\sqrt x ,{x^2}} \right\}\] over the interval \[\left[ {0,1} \right]\] very carefully.
Formula Used:
Area of the region bounded by \[y = f\left( x \right)\] and \[x\]-axis within the interval \[\left[ {a,b} \right]\] is \[A = \int_a^b {f\left( x \right)dx} \]
\[{a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\]
\[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C} \], where \[C\] is integrating constant.
Complete step by step solution:
The given function is
\[f\left( x \right) = \left\{ \begin{array}{l}\min \left\{ {x + 6,{x^2}} \right\}, - 3 \le x \le 0\\\max \left\{ {\sqrt x ,{x^2}} \right\},0 \le x \le 1\end{array} \right.\]
Let us find \[\min \left\{ {x + 6,{x^2}} \right\}\] over the interval \[\left[ { - 3,0} \right]\].
First of all, let us find the point of intersection of the curves \[y = x + 6\] and \[y = {x^2}\]
At the point of intersection, \[x + 6 = {x^2}\]
\[ \Rightarrow {x^2} = x + 6\]
\[ \Rightarrow {x^2} - x - 6 = 0\]
\[ \Rightarrow {x^2} - 3x + 2x - 6 = 0\]
\[ \Rightarrow x\left( {x - 3} \right) + 2\left( {x - 3} \right) = 0\]
\[ \Rightarrow \left( {x - 3} \right)\left( {x + 2} \right) = 0\]
\[ \Rightarrow \left( {x - 3} \right) = 0\] or \[\left( {x + 2} \right) = 0\]
\[ \Rightarrow x = 3\] or \[x = - 2\]
\[3 \notin \left[ { - 3,0} \right]\] but \[ - 2 \in \left[ { - 3,0} \right]\]
At \[x = - 2\], \[y = 4\]
So, the two curves meet at the point \[\left( { - 2,4} \right)\] on the interval \[\left[ { - 3,0} \right]\].
Let us divide the interval \[\left[ { - 3,0} \right]\] into two subintervals \[\left[ { - 3, - 2} \right)\] and \[\left( { - 2,0} \right]\].
Let us check which of the functions \[y = x + 6\] and \[y = {x^2}\] takes minimum value on the subinterval \[\left[ { - 3, - 2} \right)\].
Let \[x = - 3\].
Then the functional value of the function \[y = x + 6\] at \[x = - 3\] is \[y = - 3 + 6 = 3\]
And the functional value of the function \[y = {x^2}\] at \[x = - 3\] is \[y = {\left( { - 3} \right)^2} = 9\]
\[\therefore \min \left\{ {x + 6,{x^2}} \right\} = x + 6\] over the interval \[\left[ { - 3, - 2} \right)\].
Now, let us check which of the functions \[y = x + 6\] and \[y = {x^2}\] takes minimum value on the subinterval \[\left( { - 2,0} \right]\].
Let \[x = - 1\].
Then the functional value of the function \[y = x + 6\] at \[x = - 1\] is \[y = - 1 + 6 = 5\]
And the functional value of the function \[y = {x^2}\] at \[x = - 1\] is \[y = {\left( { - 1} \right)^2} = 1\]
\[\therefore \min \left\{ {x + 6,{x^2}} \right\} = {x^2}\] over the interval \[\left( { - 2,0} \right]\].
Let us find \[\max \left\{ {\sqrt x ,{x^2}} \right\}\] over the interval \[\left[ {0,1} \right]\].
First of all, let us find the point of intersection of the curves \[y = \sqrt x \] and \[y = {x^2}\]
At the point of intersection, \[\sqrt x = {x^2}\]
Squaring both sides, we get \[x = {x^4}\]
\[ \Rightarrow {x^4} - x = 0\]
Take \[x\] common from left-hand-side
\[ \Rightarrow x\left( {{x^3} - 1} \right) = 0\]
\[ \Rightarrow x = 0\] or \[\left( {{x^3} - 1} \right) = 0\]
Use the identity \[{a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\]
\[\therefore {x^3} - 1 = \left( {x - 1} \right)\left( {{x^2} + x + 1} \right)\]
\[\left( {{x^3} - 1} \right) = 0\]
\[ \Rightarrow \left( {x - 1} \right)\left( {{x^2} + x + 1} \right) = 0\]
\[ \Rightarrow \left( {x - 1} \right) = 0\] or \[\left( {{x^2} + x + 1} \right) = 0\]
\[ \Rightarrow x = 1\]
Discriminant of the quadratic equation \[{x^2} + x + 1 = 0\] is \[D = {\left( 1 \right)^2} - 4\left( 1 \right)\left( 1 \right) = 1 - 4 = - 3 < 0\]
So, it has no real roots.
\[\therefore \]The roots of the equation \[\sqrt x = {x^2}\] are \[0,1\].
\[0 \in \left[ {0,1} \right]\] and \[1 \in \left[ {0,1} \right]\]
At \[x = 0\], \[y = 0\]
At \[x = 1\], \[y = 1\]
So, the two curves meet at the points \[\left( {0,0} \right)\] and \[\left( {1,1} \right)\] on the interval \[\left[ {0,1} \right]\].
Let us check which of the functions \[y = \sqrt x \] and \[y = {x^2}\] takes maximum value on the interval \[\left[ {0,1} \right]\].
Let us take \[x = \dfrac{1}{2} \in \left[ {0,1} \right]\]
Then the functional value of the function \[y = \sqrt x \] at \[x = \dfrac{1}{2}\] is \[y = \dfrac{1}{{\sqrt 2 }}\]
And the functional value of the function \[y = {x^2}\] at \[x = \dfrac{1}{2}\] is \[y = {\left( {\dfrac{1}{2}} \right)^2} = \dfrac{1}{4}\]
\[\therefore \max \left\{ {\sqrt x ,{x^2}} \right\} = \sqrt x \] over the interval \[\left[ {0,1} \right]\].
Finally, we get
\[\min \left\{ {x + 6,{x^2}} \right\} = x + 6\] over the interval \[\left[ { - 3, - 2} \right)\]
\[\min \left\{ {x + 6,{x^2}} \right\} = {x^2}\] over the interval \[\left( { - 2,0} \right]\]
\[\max \left\{ {\sqrt x ,{x^2}} \right\} = \sqrt x \] over the interval \[\left[ {0,1} \right]\]
Now, the required area is \[\int\limits_{ - 3}^1 {f\left( x \right)dx} \]
\[ = \int\limits_{ - 3}^{ - 2} {\left( {x + 6} \right)dx + } \int\limits_{ - 2}^0 {\left( {{x^2}} \right)dx + \int\limits_0^1 {\left( {\sqrt x } \right)dx} } \]
Use the formula \[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C} \], where \[C\] is integrating constant.
\[\int\limits_{ - 3}^{ - 2} {\left( {x + 6} \right)dx} = \int\limits_{ - 3}^{ - 2} {xdx} + 6\int\limits_{ - 3}^{ - 2} {dx} \]
\[ = \left[ {\dfrac{{{x^2}}}{2}} \right]_{ - 3}^{ - 2} + 6\left[ x \right]_{ - 3}^{ - 2}\]
\[ = \left\{ {\dfrac{{{{\left( { - 2} \right)}^2}}}{2} - \dfrac{{{{\left( { - 3} \right)}^2}}}{2}} \right\} + 6\left\{ {\left( { - 2} \right) - \left( { - 3} \right)} \right\}\]
\[ = \left( {2 - \dfrac{9}{2}} \right) + 6\left( { - 2 + 3} \right)\]
\[ = - \dfrac{5}{2} + 6\]
\[ = \dfrac{7}{2}\]
\[\int\limits_{ - 2}^0 {\left( {{x^2}} \right)dx} = \left[ {\dfrac{{{x^3}}}{3}} \right]_{ - 2}^0 = \left\{ {\dfrac{{{{\left( 0 \right)}^3}}}{3} - \dfrac{{{{\left( { - 2} \right)}^3}}}{3}} \right\} = 0 - \dfrac{{ - 8}}{3} = \dfrac{8}{3}\]
\[\int_{ - 2}^0 {\left( {{x^2}} \right)dx} = \left[ {\dfrac{{{x^{\dfrac{3}{2}}}}}{{\dfrac{3}{2}}}} \right]_0^1 = \dfrac{2}{3}\left[ {{x^{\dfrac{3}{2}}}} \right]_0^1 = \dfrac{2}{3}\left[ {{1^{\dfrac{3}{2}}} - {0^{\dfrac{3}{2}}}} \right] = \dfrac{2}{3}\]
\[\therefore A = \dfrac{7}{2} + \dfrac{8}{3} + \dfrac{2}{3} = \dfrac{{21 + 16 + 4}}{6} = \dfrac{{41}}{6}\]
\[ \Rightarrow 6A = 41\]
Hence the required value is \[41\].
Note:The given function is a multi-valued function defined on the interval \[\left[ { - 3,1} \right]\]. The function takes different forms over the intervals \[\left[ { - 3,0} \right]\] and \[\left[ {0,1} \right]\]. You have to find \[\min \left\{ {x + 6,{x^2}} \right\}\] over the interval \[\left[ { - 3,0} \right]\] and \[\max \left\{ {\sqrt x ,{x^2}} \right\}\] over the interval \[\left[ {0,1} \right]\] very carefully.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NEET 2025 – Every New Update You Need to Know

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

NEET Total Marks 2025

1 Billion in Rupees
