
Let $f:\left[ {0,2} \right] \Rightarrow R$ be the function defined by $f(x) = \left( {3 - \sin \left( {2\pi x} \right)} \right)\sin \left( {\pi x - \dfrac{\pi }{4}} \right) - \sin \left( {3\pi x - \dfrac{\pi }{4}} \right)$.
If $\alpha ,\beta \in \left[ {0,2} \right]$ are such that $\left\{ {x \in \left[ {0,2} \right]:f\left( x \right) \geqslant 0} \right\} = \left[ {\alpha ,\beta } \right]$ , then the value of $\beta - \alpha $ is
Answer
162.6k+ views
Hint: Let, $\pi x - \dfrac{\pi }{4} = \theta $ and then solve the question using $\left\{ {x \in \left[ {0,2} \right]:f\left( x \right) \geqslant 0} \right\} = \left[ {\alpha ,\beta } \right]$ where you have to consider $f\left( x \right) \geqslant 0$ . In last find the value of $x$ to know the values of $\alpha ,\beta $and put the required values in $\beta - \alpha $.
Formula Used:
Trigonometric formula –
$\cos 2\theta = 1 - 2{\sin ^2}\theta $
$\sin 3\theta = 3\sin \theta - 4{\sin ^3}\theta $
Complete step by step solution:
Given that,
$f(x) = \left( {3 - \sin \left( {2\pi x} \right)} \right)\sin \left( {\pi x - \dfrac{\pi }{4}} \right) - \sin \left( {3\pi x - \dfrac{\pi }{4}} \right)$
Let, $\pi x - \dfrac{\pi }{4} = \theta $ OR $\pi x = \dfrac{\pi }{4} + \theta $
Now, $\left\{ {x \in \left[ {0,2} \right]:f\left( x \right) \geqslant 0} \right\} = \left[ {\alpha ,\beta } \right] - - - - - - (1)$
$f\left( x \right) \geqslant 0$
$ \Rightarrow \left( {3 - \sin \left( {2\pi x} \right)} \right)\sin \left( {\pi x - \dfrac{\pi }{4}} \right) - \sin \left( {3\pi x - \dfrac{\pi }{4}} \right) \geqslant 0$
$ \Rightarrow \left( {3 - \sin \left( {2\left( {\dfrac{\pi }{4} + \theta } \right)} \right)} \right)\sin \theta - \sin \left( {3\left( {\dfrac{\pi }{4} + \theta } \right) - \dfrac{\pi }{4}} \right) \geqslant 0$
$ \Rightarrow \left( {3 - \sin \left( {\dfrac{\pi }{2} + 2\theta } \right)} \right)\sin \theta - \sin \left( {\dfrac{{3\pi }}{4} + \theta - \dfrac{\pi }{4}} \right) \geqslant 0$
$ \Rightarrow 3\sin \theta - \sin \theta \sin \left( {\dfrac{\pi }{2} + 2\theta } \right) - \sin \left( {\pi + 3\theta } \right) \geqslant 0$
$ \Rightarrow 3\sin \theta - \sin \theta \cos 2\theta + \sin 3\theta \geqslant 0$
$ \Rightarrow 3\sin \theta - \sin \theta \left( {1 - 2{{\sin }^2}\theta } \right) + \left( {3\sin \theta - 4{{\sin }^3}\theta } \right) \geqslant 0$
$ \Rightarrow \sin \theta \left[ {3 - \left( {1 - 2{{\sin }^2}\theta } \right) + 3 - 4{{\sin }^2}\theta } \right] \geqslant 0$
$ \Rightarrow \sin \theta \left[ {5 - 2{{\sin }^2}\theta } \right] \geqslant 0$
$ \Rightarrow \sin \theta \left[ {5 - 2\left( {\dfrac{{1 - \cos 2\theta }}{2}} \right)} \right] \geqslant 0$
$ \Rightarrow \sin \theta \left[ {4 + \cos 2\theta } \right] \geqslant 0$
$ \Rightarrow \sin \theta \geqslant 0$
$\therefore \theta \in \left[ {0,\pi } \right]$
$0 \leqslant \theta \leqslant \pi $
$0 \leqslant \pi x - \dfrac{\pi }{4} \leqslant \pi $
$\dfrac{\pi }{4} \leqslant \pi x \leqslant \pi + \dfrac{\pi }{4}$
$\dfrac{\pi }{4} \leqslant \pi x \leqslant \dfrac{{5\pi }}{4}$
$\dfrac{1}{4} \leqslant x \leqslant \dfrac{5}{4}$
$x \in \left[ {\dfrac{1}{4},\dfrac{5}{4}} \right] - - - - - (2)$
From equation (1) and (2)
$\alpha = \dfrac{1}{4},\beta = \dfrac{5}{4}$
Hence, the value of $\beta - \alpha $ is $1$.
Note: The key concept involved in solving this problem is the good knowledge of Trigonometry formula, ratio, and identities. Students must remember that in which quadrant the sign will change and in which the trigonometric function will change.
Formula Used:
Trigonometric formula –
$\cos 2\theta = 1 - 2{\sin ^2}\theta $
$\sin 3\theta = 3\sin \theta - 4{\sin ^3}\theta $
Complete step by step solution:
Given that,
$f(x) = \left( {3 - \sin \left( {2\pi x} \right)} \right)\sin \left( {\pi x - \dfrac{\pi }{4}} \right) - \sin \left( {3\pi x - \dfrac{\pi }{4}} \right)$
Let, $\pi x - \dfrac{\pi }{4} = \theta $ OR $\pi x = \dfrac{\pi }{4} + \theta $
Now, $\left\{ {x \in \left[ {0,2} \right]:f\left( x \right) \geqslant 0} \right\} = \left[ {\alpha ,\beta } \right] - - - - - - (1)$
$f\left( x \right) \geqslant 0$
$ \Rightarrow \left( {3 - \sin \left( {2\pi x} \right)} \right)\sin \left( {\pi x - \dfrac{\pi }{4}} \right) - \sin \left( {3\pi x - \dfrac{\pi }{4}} \right) \geqslant 0$
$ \Rightarrow \left( {3 - \sin \left( {2\left( {\dfrac{\pi }{4} + \theta } \right)} \right)} \right)\sin \theta - \sin \left( {3\left( {\dfrac{\pi }{4} + \theta } \right) - \dfrac{\pi }{4}} \right) \geqslant 0$
$ \Rightarrow \left( {3 - \sin \left( {\dfrac{\pi }{2} + 2\theta } \right)} \right)\sin \theta - \sin \left( {\dfrac{{3\pi }}{4} + \theta - \dfrac{\pi }{4}} \right) \geqslant 0$
$ \Rightarrow 3\sin \theta - \sin \theta \sin \left( {\dfrac{\pi }{2} + 2\theta } \right) - \sin \left( {\pi + 3\theta } \right) \geqslant 0$
$ \Rightarrow 3\sin \theta - \sin \theta \cos 2\theta + \sin 3\theta \geqslant 0$
$ \Rightarrow 3\sin \theta - \sin \theta \left( {1 - 2{{\sin }^2}\theta } \right) + \left( {3\sin \theta - 4{{\sin }^3}\theta } \right) \geqslant 0$
$ \Rightarrow \sin \theta \left[ {3 - \left( {1 - 2{{\sin }^2}\theta } \right) + 3 - 4{{\sin }^2}\theta } \right] \geqslant 0$
$ \Rightarrow \sin \theta \left[ {5 - 2{{\sin }^2}\theta } \right] \geqslant 0$
$ \Rightarrow \sin \theta \left[ {5 - 2\left( {\dfrac{{1 - \cos 2\theta }}{2}} \right)} \right] \geqslant 0$
$ \Rightarrow \sin \theta \left[ {4 + \cos 2\theta } \right] \geqslant 0$
$ \Rightarrow \sin \theta \geqslant 0$
$\therefore \theta \in \left[ {0,\pi } \right]$
$0 \leqslant \theta \leqslant \pi $
$0 \leqslant \pi x - \dfrac{\pi }{4} \leqslant \pi $
$\dfrac{\pi }{4} \leqslant \pi x \leqslant \pi + \dfrac{\pi }{4}$
$\dfrac{\pi }{4} \leqslant \pi x \leqslant \dfrac{{5\pi }}{4}$
$\dfrac{1}{4} \leqslant x \leqslant \dfrac{5}{4}$
$x \in \left[ {\dfrac{1}{4},\dfrac{5}{4}} \right] - - - - - (2)$
From equation (1) and (2)
$\alpha = \dfrac{1}{4},\beta = \dfrac{5}{4}$
Hence, the value of $\beta - \alpha $ is $1$.
Note: The key concept involved in solving this problem is the good knowledge of Trigonometry formula, ratio, and identities. Students must remember that in which quadrant the sign will change and in which the trigonometric function will change.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

1 Billion in Rupees

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE
