
Let $f:\left[ {0,2} \right] \Rightarrow R$ be the function defined by $f(x) = \left( {3 - \sin \left( {2\pi x} \right)} \right)\sin \left( {\pi x - \dfrac{\pi }{4}} \right) - \sin \left( {3\pi x - \dfrac{\pi }{4}} \right)$.
If $\alpha ,\beta \in \left[ {0,2} \right]$ are such that $\left\{ {x \in \left[ {0,2} \right]:f\left( x \right) \geqslant 0} \right\} = \left[ {\alpha ,\beta } \right]$ , then the value of $\beta - \alpha $ is
Answer
217.5k+ views
Hint: Let, $\pi x - \dfrac{\pi }{4} = \theta $ and then solve the question using $\left\{ {x \in \left[ {0,2} \right]:f\left( x \right) \geqslant 0} \right\} = \left[ {\alpha ,\beta } \right]$ where you have to consider $f\left( x \right) \geqslant 0$ . In last find the value of $x$ to know the values of $\alpha ,\beta $and put the required values in $\beta - \alpha $.
Formula Used:
Trigonometric formula –
$\cos 2\theta = 1 - 2{\sin ^2}\theta $
$\sin 3\theta = 3\sin \theta - 4{\sin ^3}\theta $
Complete step by step solution:
Given that,
$f(x) = \left( {3 - \sin \left( {2\pi x} \right)} \right)\sin \left( {\pi x - \dfrac{\pi }{4}} \right) - \sin \left( {3\pi x - \dfrac{\pi }{4}} \right)$
Let, $\pi x - \dfrac{\pi }{4} = \theta $ OR $\pi x = \dfrac{\pi }{4} + \theta $
Now, $\left\{ {x \in \left[ {0,2} \right]:f\left( x \right) \geqslant 0} \right\} = \left[ {\alpha ,\beta } \right] - - - - - - (1)$
$f\left( x \right) \geqslant 0$
$ \Rightarrow \left( {3 - \sin \left( {2\pi x} \right)} \right)\sin \left( {\pi x - \dfrac{\pi }{4}} \right) - \sin \left( {3\pi x - \dfrac{\pi }{4}} \right) \geqslant 0$
$ \Rightarrow \left( {3 - \sin \left( {2\left( {\dfrac{\pi }{4} + \theta } \right)} \right)} \right)\sin \theta - \sin \left( {3\left( {\dfrac{\pi }{4} + \theta } \right) - \dfrac{\pi }{4}} \right) \geqslant 0$
$ \Rightarrow \left( {3 - \sin \left( {\dfrac{\pi }{2} + 2\theta } \right)} \right)\sin \theta - \sin \left( {\dfrac{{3\pi }}{4} + \theta - \dfrac{\pi }{4}} \right) \geqslant 0$
$ \Rightarrow 3\sin \theta - \sin \theta \sin \left( {\dfrac{\pi }{2} + 2\theta } \right) - \sin \left( {\pi + 3\theta } \right) \geqslant 0$
$ \Rightarrow 3\sin \theta - \sin \theta \cos 2\theta + \sin 3\theta \geqslant 0$
$ \Rightarrow 3\sin \theta - \sin \theta \left( {1 - 2{{\sin }^2}\theta } \right) + \left( {3\sin \theta - 4{{\sin }^3}\theta } \right) \geqslant 0$
$ \Rightarrow \sin \theta \left[ {3 - \left( {1 - 2{{\sin }^2}\theta } \right) + 3 - 4{{\sin }^2}\theta } \right] \geqslant 0$
$ \Rightarrow \sin \theta \left[ {5 - 2{{\sin }^2}\theta } \right] \geqslant 0$
$ \Rightarrow \sin \theta \left[ {5 - 2\left( {\dfrac{{1 - \cos 2\theta }}{2}} \right)} \right] \geqslant 0$
$ \Rightarrow \sin \theta \left[ {4 + \cos 2\theta } \right] \geqslant 0$
$ \Rightarrow \sin \theta \geqslant 0$
$\therefore \theta \in \left[ {0,\pi } \right]$
$0 \leqslant \theta \leqslant \pi $
$0 \leqslant \pi x - \dfrac{\pi }{4} \leqslant \pi $
$\dfrac{\pi }{4} \leqslant \pi x \leqslant \pi + \dfrac{\pi }{4}$
$\dfrac{\pi }{4} \leqslant \pi x \leqslant \dfrac{{5\pi }}{4}$
$\dfrac{1}{4} \leqslant x \leqslant \dfrac{5}{4}$
$x \in \left[ {\dfrac{1}{4},\dfrac{5}{4}} \right] - - - - - (2)$
From equation (1) and (2)
$\alpha = \dfrac{1}{4},\beta = \dfrac{5}{4}$
Hence, the value of $\beta - \alpha $ is $1$.
Note: The key concept involved in solving this problem is the good knowledge of Trigonometry formula, ratio, and identities. Students must remember that in which quadrant the sign will change and in which the trigonometric function will change.
Formula Used:
Trigonometric formula –
$\cos 2\theta = 1 - 2{\sin ^2}\theta $
$\sin 3\theta = 3\sin \theta - 4{\sin ^3}\theta $
Complete step by step solution:
Given that,
$f(x) = \left( {3 - \sin \left( {2\pi x} \right)} \right)\sin \left( {\pi x - \dfrac{\pi }{4}} \right) - \sin \left( {3\pi x - \dfrac{\pi }{4}} \right)$
Let, $\pi x - \dfrac{\pi }{4} = \theta $ OR $\pi x = \dfrac{\pi }{4} + \theta $
Now, $\left\{ {x \in \left[ {0,2} \right]:f\left( x \right) \geqslant 0} \right\} = \left[ {\alpha ,\beta } \right] - - - - - - (1)$
$f\left( x \right) \geqslant 0$
$ \Rightarrow \left( {3 - \sin \left( {2\pi x} \right)} \right)\sin \left( {\pi x - \dfrac{\pi }{4}} \right) - \sin \left( {3\pi x - \dfrac{\pi }{4}} \right) \geqslant 0$
$ \Rightarrow \left( {3 - \sin \left( {2\left( {\dfrac{\pi }{4} + \theta } \right)} \right)} \right)\sin \theta - \sin \left( {3\left( {\dfrac{\pi }{4} + \theta } \right) - \dfrac{\pi }{4}} \right) \geqslant 0$
$ \Rightarrow \left( {3 - \sin \left( {\dfrac{\pi }{2} + 2\theta } \right)} \right)\sin \theta - \sin \left( {\dfrac{{3\pi }}{4} + \theta - \dfrac{\pi }{4}} \right) \geqslant 0$
$ \Rightarrow 3\sin \theta - \sin \theta \sin \left( {\dfrac{\pi }{2} + 2\theta } \right) - \sin \left( {\pi + 3\theta } \right) \geqslant 0$
$ \Rightarrow 3\sin \theta - \sin \theta \cos 2\theta + \sin 3\theta \geqslant 0$
$ \Rightarrow 3\sin \theta - \sin \theta \left( {1 - 2{{\sin }^2}\theta } \right) + \left( {3\sin \theta - 4{{\sin }^3}\theta } \right) \geqslant 0$
$ \Rightarrow \sin \theta \left[ {3 - \left( {1 - 2{{\sin }^2}\theta } \right) + 3 - 4{{\sin }^2}\theta } \right] \geqslant 0$
$ \Rightarrow \sin \theta \left[ {5 - 2{{\sin }^2}\theta } \right] \geqslant 0$
$ \Rightarrow \sin \theta \left[ {5 - 2\left( {\dfrac{{1 - \cos 2\theta }}{2}} \right)} \right] \geqslant 0$
$ \Rightarrow \sin \theta \left[ {4 + \cos 2\theta } \right] \geqslant 0$
$ \Rightarrow \sin \theta \geqslant 0$
$\therefore \theta \in \left[ {0,\pi } \right]$
$0 \leqslant \theta \leqslant \pi $
$0 \leqslant \pi x - \dfrac{\pi }{4} \leqslant \pi $
$\dfrac{\pi }{4} \leqslant \pi x \leqslant \pi + \dfrac{\pi }{4}$
$\dfrac{\pi }{4} \leqslant \pi x \leqslant \dfrac{{5\pi }}{4}$
$\dfrac{1}{4} \leqslant x \leqslant \dfrac{5}{4}$
$x \in \left[ {\dfrac{1}{4},\dfrac{5}{4}} \right] - - - - - (2)$
From equation (1) and (2)
$\alpha = \dfrac{1}{4},\beta = \dfrac{5}{4}$
Hence, the value of $\beta - \alpha $ is $1$.
Note: The key concept involved in solving this problem is the good knowledge of Trigonometry formula, ratio, and identities. Students must remember that in which quadrant the sign will change and in which the trigonometric function will change.
Recently Updated Pages
Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Addition of Three Vectors: Methods & Examples

Addition of Vectors: Simple Guide for Students

Algebra Made Easy: Step-by-Step Guide for Students

Relations and Functions: Complete Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

