
Let \[E'\] denote the complement of an event \[E\]. Let \[E,F,G\] be pairwise independent events with \[P\left( G \right) > 0\], and \[P\left( {E \cap F \cap G} \right) = 0\]. Then \[P\left( {E' \cap F'|G} \right)\] equals
(A) \[P\left( {E'} \right) + P\left( {F'} \right)\]
(B) \[P\left( {E'} \right) - P\left( {F'} \right)\]
(C) \[P\left( {E'} \right) - P\left( F \right)\]
(D) \[P\left( E \right) - P\left( {F'} \right)\]
Answer
163.5k+ views
Hint: \[P\left( {E' \cap F'|G} \right)\] can be expanded using the formula of conditional probability. Thus, the result can be further simplified by taking \[P(G)\] common and canceling. \[P(E')\]is given by \[P(E') = 1 - P(E)\]. Using this, the result can be simplified further to obtain the required solution.
Formula Used:
If E and F are two events, then the conditional probability of E under the condition that F has occurred, written as \[P\left( {E{\text{ }}|{\text{ }}F} \right)\] is given by \[P\left( {E{\text{ }}|{\text{ }}F} \right) = \dfrac{{P(E \cap F)}}{{P(F)}},P(F) \ne 0\]. The probability that event \[E\] will not occur is denoted by \[P(E')\].\[P(E')\] is given by \[P(E') = 1 - P(E)\].
Complete step by step Solution:
\[P\left( {E' \cap F'|G} \right){\text{ }} = {\text{ }}\dfrac{{P\left( {E' \cap F' \cap G} \right)}}{{P\left( G \right)}}\]
\[ = {\text{ }}\dfrac{{P(G) - P(E \cap G) - P(G \cap F)}}{{P\left( G \right)}}\]
Since \[P(G) \ne 0\],
\[ = {\text{ }}\dfrac{{P(G)(1 - P(E) - P(F))}}{{P\left( G \right)}}\] [since E, F, G are pairwise independent]
\[ = (1 - P(E) - P(F))\]
\[ = {\text{ }}P\left( {E'} \right) - P\left( F \right)\]
Hence, \[P\left( {E' \cap F'|G} \right) = {\text{ }}P\left( {E'} \right) - P\left( F \right)\]
Hence, the correct option is (C).
Note: \[P\left( {E' \cap F'|G} \right){\text{ }} = {\text{ }}\dfrac{{P\left( {E' \cap F' \cap G} \right)}}{{P\left( G \right)}}\] only when \[P\left( G \right)\] is not equal to zero. If \[P\left( G \right) = 0\] then the value remains undefined.
Three or more events are said to be pairwise independent if they are independent when considered two at a time.
Formula Used:
If E and F are two events, then the conditional probability of E under the condition that F has occurred, written as \[P\left( {E{\text{ }}|{\text{ }}F} \right)\] is given by \[P\left( {E{\text{ }}|{\text{ }}F} \right) = \dfrac{{P(E \cap F)}}{{P(F)}},P(F) \ne 0\]. The probability that event \[E\] will not occur is denoted by \[P(E')\].\[P(E')\] is given by \[P(E') = 1 - P(E)\].
Complete step by step Solution:
\[P\left( {E' \cap F'|G} \right){\text{ }} = {\text{ }}\dfrac{{P\left( {E' \cap F' \cap G} \right)}}{{P\left( G \right)}}\]
\[ = {\text{ }}\dfrac{{P(G) - P(E \cap G) - P(G \cap F)}}{{P\left( G \right)}}\]
Since \[P(G) \ne 0\],
\[ = {\text{ }}\dfrac{{P(G)(1 - P(E) - P(F))}}{{P\left( G \right)}}\] [since E, F, G are pairwise independent]
\[ = (1 - P(E) - P(F))\]
\[ = {\text{ }}P\left( {E'} \right) - P\left( F \right)\]
Hence, \[P\left( {E' \cap F'|G} \right) = {\text{ }}P\left( {E'} \right) - P\left( F \right)\]
Hence, the correct option is (C).
Note: \[P\left( {E' \cap F'|G} \right){\text{ }} = {\text{ }}\dfrac{{P\left( {E' \cap F' \cap G} \right)}}{{P\left( G \right)}}\] only when \[P\left( G \right)\] is not equal to zero. If \[P\left( G \right) = 0\] then the value remains undefined.
Three or more events are said to be pairwise independent if they are independent when considered two at a time.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced 2025 Notes

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Total MBBS Seats in India 2025: Government and Private Medical Colleges
