
Let \[A = \left[ {\begin{array}{*{20}{c}}
{{a_1}} \\
{{a_2}}
\end{array}} \right]\] and \[B = \left[ {\begin{array}{*{20}{c}}
{{b_1}} \\
{{b_2}}
\end{array}} \right]\] be two \[2 \times 1\] matrices with real entries such that \[A = XB\], where \[X = \dfrac{1}{{\sqrt 3 }}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
1&k
\end{array}} \right]\] , and \[k \in R\]. If \[a_1^2 + a_2^2 = (\dfrac{2}{3})(b_1^2 + b_2^2)\] and \[({k^2} + 1)b_2^2 \ne - 2{b_1}{b_2}\], then the value of \[k\]is ________.
Answer
217.2k+ views
Hint : We are given two \[2 \times 1\] matrices \[A = \left[ {\begin{array}{*{20}{c}}
{{a_1}} \\
{{a_2}}
\end{array}} \right]\] and \[B = \left[ {\begin{array}{*{20}{c}}
{{b_1}} \\
{{b_2}}
\end{array}} \right]\] where \[A = XB\], and \[X = \dfrac{1}{{\sqrt 3 }}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
1&k
\end{array}} \right]\]. Also, it is given that \[a_1^2 + a_2^2 = (\dfrac{2}{3})(b_1^2 + b_2^2)\] and \[({k^2} + 1)b_2^2 \ne - 2{b_1}{b_2}\]. We have to find the value of \[k\] . We will be first multiplying the matrices \[B = \left[ {\begin{array}{*{20}{c}}
{{b_1}} \\
{{b_2}}
\end{array}} \right]\] and \[X = \dfrac{1}{{\sqrt 3 }}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
1&k
\end{array}} \right]\]. Then equating this with \[A = \left[ {\begin{array}{*{20}{c}}
{{a_1}} \\
{{a_2}}
\end{array}} \right]\]. Then we will find the values of \[{a_1},{a_2}\] in terms of \[{b_1},{b_2}\], we will square \[{a_1},{a_2}\] and add them. Then we will compare the resultant answer with \[(\dfrac{2}{3})(b_1^2 + b_2^2)\] to find the value of \[k\].
Formula used : Following formulae will be useful in solving the given question
\[
\left[ {{a_1}} \right] = \left[ {\begin{array}{*{20}{c}}
{{a_2}}&{{a_3}}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{{b_1}} \\
{{b_2}}
\end{array}} \right] \\
\Rightarrow {a_1} = {a_2}{b_1} + {a_3}{b_2} \\
\]
\[{(a \pm b)^2} = {a^2} \pm 2ab + {b^2}\]
Complete Step-by-step Solution:
We are given \[A = \left[ {\begin{array}{*{20}{c}}
{{a_1}} \\
{{a_2}}
\end{array}} \right]\] , \[B = \left[ {\begin{array}{*{20}{c}}
{{b_1}} \\
{{b_2}}
\end{array}} \right]\], \[X = \dfrac{1}{{\sqrt 3 }}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
1&k
\end{array}} \right]\]
On putting this value in \[A = XB\], we get
\[
A = XB \\
\;\left[ {\begin{array}{*{20}{c}}
{{a_1}} \\
{{a_2}}
\end{array}} \right] = \dfrac{1}{{\sqrt 3 }}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
1&k
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{{b_1}} \\
{{b_2}}
\end{array}} \right] \\
\;\left[ {\begin{array}{*{20}{c}}
{{a_1}} \\
{{a_2}}
\end{array}} \right] = \dfrac{1}{{\sqrt 3 }}\left[ {\begin{array}{*{20}{c}}
{{b_1} - {b_2}} \\
{{b_1} + k{b_2}}
\end{array}} \right] \\
\]
From this we can write
\[
\;{a_1} = \dfrac{1}{{\sqrt 3 }}({b_1} - {b_2}) \\
{a_2} = \dfrac{1}{{\sqrt 3 }}({b_1} + k{b_2}) \\
\]
On squaring these two values, we get
\[
{\left( {\;{a_1}} \right)^2} = {\left[ {\dfrac{1}{{\sqrt 3 }}({b_1} - {b_2})} \right]^2} \\
= \dfrac{1}{3}(b_1^2 + b_2^2 - 2{b_1}{b_2}) \\
{\left( {{a_2}} \right)^2} = {\left[ {\dfrac{1}{{\sqrt 3 }}({b_1} + k{b_2})} \right]^2} \\
= \dfrac{1}{3}(b_1^2 + {k^2}b_2^2 - 2k{b_1}{b_2}) \\
\]
Now, on summing these above values, we get
\[
{\left( {\;{a_1}} \right)^2} + {\left( {{a_2}} \right)^2} = \dfrac{1}{3}(b_1^2 + b_2^2 - 2{b_1}{b_2}) + \dfrac{1}{3}(b_1^2 + {k^2}b_2^2 - 2k{b_1}{b_2}) \\
= \dfrac{1}{3}(b_1^2 + b_2^2 - 2{b_1}{b_2} + b_1^2 + {k^2}b_2^2 + 2k{b_1}{b_2}) \\
= \dfrac{1}{3}(2b_1^2 + ({k^2} + 1)b_2^2 - 2{b_1}{b_2}(k - 1)) \\
\]
It is also given that \[a_1^2 + a_2^2 = (\dfrac{2}{3})(b_1^2 + b_2^2)\]. So, we can say that
\[
(\dfrac{2}{3})(b_1^2 + b_2^2) = \dfrac{1}{3}(2b_1^2 + ({k^2} + 1)b_2^2 - 2{b_1}{b_2}(k - 1)) \\
\dfrac{2}{3}(b_1^2 + b_2^2) = \dfrac{1}{3}(2b_1^2 + ({k^2} + 1)b_2^2 - 2{b_1}{b_2}(k - 1)) \\
\]
On multiplying both sides with \[3\]and further simplifying, we get
\[
3 \times \dfrac{2}{3}(b_1^2 + b_2^2) = 3 \times \dfrac{1}{3}(2b_1^2 + ({k^2} + 1)b_2^2 - 2{b_1}{b_2}(k - 1)) \\
2(b_1^2 + b_2^2) = 2b_1^2 + ({k^2} + 1)b_2^2 - 2{b_1}{b_2}(k - 1) \\
2b_1^2 + 2b_2^2 = 2b_1^2 + ({k^2} + 1)b_2^2 - 2{b_1}{b_2}(k - 1) \\
2b_2^2 = ({k^2} + 1)b_2^2 - 2{b_1}{b_2}(k - 1) \\
\]
On comparing L.H.S and R.H.S, we get
\[
2 = {k^2} + 1 \\
{k^2} = 1 \\
k = \pm 1 \\
\]
And
\[
- 2{b_1}{b_2}(k - 1) = 0 \\
k - 1 = 0 \\
k = 1 \\
\]
Thus value of \[k\] is \[1\]
Note : Here, students generally make mistakes while doing matrix multiplication. They generally multiply the first row of the first matrix with the first row of the second matrix, which is wrong. They should multiply the first row of the first matrix with the first column of the second matrix to obtain the first element in matrix multiplication.
{{a_1}} \\
{{a_2}}
\end{array}} \right]\] and \[B = \left[ {\begin{array}{*{20}{c}}
{{b_1}} \\
{{b_2}}
\end{array}} \right]\] where \[A = XB\], and \[X = \dfrac{1}{{\sqrt 3 }}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
1&k
\end{array}} \right]\]. Also, it is given that \[a_1^2 + a_2^2 = (\dfrac{2}{3})(b_1^2 + b_2^2)\] and \[({k^2} + 1)b_2^2 \ne - 2{b_1}{b_2}\]. We have to find the value of \[k\] . We will be first multiplying the matrices \[B = \left[ {\begin{array}{*{20}{c}}
{{b_1}} \\
{{b_2}}
\end{array}} \right]\] and \[X = \dfrac{1}{{\sqrt 3 }}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
1&k
\end{array}} \right]\]. Then equating this with \[A = \left[ {\begin{array}{*{20}{c}}
{{a_1}} \\
{{a_2}}
\end{array}} \right]\]. Then we will find the values of \[{a_1},{a_2}\] in terms of \[{b_1},{b_2}\], we will square \[{a_1},{a_2}\] and add them. Then we will compare the resultant answer with \[(\dfrac{2}{3})(b_1^2 + b_2^2)\] to find the value of \[k\].
Formula used : Following formulae will be useful in solving the given question
\[
\left[ {{a_1}} \right] = \left[ {\begin{array}{*{20}{c}}
{{a_2}}&{{a_3}}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{{b_1}} \\
{{b_2}}
\end{array}} \right] \\
\Rightarrow {a_1} = {a_2}{b_1} + {a_3}{b_2} \\
\]
\[{(a \pm b)^2} = {a^2} \pm 2ab + {b^2}\]
Complete Step-by-step Solution:
We are given \[A = \left[ {\begin{array}{*{20}{c}}
{{a_1}} \\
{{a_2}}
\end{array}} \right]\] , \[B = \left[ {\begin{array}{*{20}{c}}
{{b_1}} \\
{{b_2}}
\end{array}} \right]\], \[X = \dfrac{1}{{\sqrt 3 }}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
1&k
\end{array}} \right]\]
On putting this value in \[A = XB\], we get
\[
A = XB \\
\;\left[ {\begin{array}{*{20}{c}}
{{a_1}} \\
{{a_2}}
\end{array}} \right] = \dfrac{1}{{\sqrt 3 }}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
1&k
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{{b_1}} \\
{{b_2}}
\end{array}} \right] \\
\;\left[ {\begin{array}{*{20}{c}}
{{a_1}} \\
{{a_2}}
\end{array}} \right] = \dfrac{1}{{\sqrt 3 }}\left[ {\begin{array}{*{20}{c}}
{{b_1} - {b_2}} \\
{{b_1} + k{b_2}}
\end{array}} \right] \\
\]
From this we can write
\[
\;{a_1} = \dfrac{1}{{\sqrt 3 }}({b_1} - {b_2}) \\
{a_2} = \dfrac{1}{{\sqrt 3 }}({b_1} + k{b_2}) \\
\]
On squaring these two values, we get
\[
{\left( {\;{a_1}} \right)^2} = {\left[ {\dfrac{1}{{\sqrt 3 }}({b_1} - {b_2})} \right]^2} \\
= \dfrac{1}{3}(b_1^2 + b_2^2 - 2{b_1}{b_2}) \\
{\left( {{a_2}} \right)^2} = {\left[ {\dfrac{1}{{\sqrt 3 }}({b_1} + k{b_2})} \right]^2} \\
= \dfrac{1}{3}(b_1^2 + {k^2}b_2^2 - 2k{b_1}{b_2}) \\
\]
Now, on summing these above values, we get
\[
{\left( {\;{a_1}} \right)^2} + {\left( {{a_2}} \right)^2} = \dfrac{1}{3}(b_1^2 + b_2^2 - 2{b_1}{b_2}) + \dfrac{1}{3}(b_1^2 + {k^2}b_2^2 - 2k{b_1}{b_2}) \\
= \dfrac{1}{3}(b_1^2 + b_2^2 - 2{b_1}{b_2} + b_1^2 + {k^2}b_2^2 + 2k{b_1}{b_2}) \\
= \dfrac{1}{3}(2b_1^2 + ({k^2} + 1)b_2^2 - 2{b_1}{b_2}(k - 1)) \\
\]
It is also given that \[a_1^2 + a_2^2 = (\dfrac{2}{3})(b_1^2 + b_2^2)\]. So, we can say that
\[
(\dfrac{2}{3})(b_1^2 + b_2^2) = \dfrac{1}{3}(2b_1^2 + ({k^2} + 1)b_2^2 - 2{b_1}{b_2}(k - 1)) \\
\dfrac{2}{3}(b_1^2 + b_2^2) = \dfrac{1}{3}(2b_1^2 + ({k^2} + 1)b_2^2 - 2{b_1}{b_2}(k - 1)) \\
\]
On multiplying both sides with \[3\]and further simplifying, we get
\[
3 \times \dfrac{2}{3}(b_1^2 + b_2^2) = 3 \times \dfrac{1}{3}(2b_1^2 + ({k^2} + 1)b_2^2 - 2{b_1}{b_2}(k - 1)) \\
2(b_1^2 + b_2^2) = 2b_1^2 + ({k^2} + 1)b_2^2 - 2{b_1}{b_2}(k - 1) \\
2b_1^2 + 2b_2^2 = 2b_1^2 + ({k^2} + 1)b_2^2 - 2{b_1}{b_2}(k - 1) \\
2b_2^2 = ({k^2} + 1)b_2^2 - 2{b_1}{b_2}(k - 1) \\
\]
On comparing L.H.S and R.H.S, we get
\[
2 = {k^2} + 1 \\
{k^2} = 1 \\
k = \pm 1 \\
\]
And
\[
- 2{b_1}{b_2}(k - 1) = 0 \\
k - 1 = 0 \\
k = 1 \\
\]
Thus value of \[k\] is \[1\]
Note : Here, students generally make mistakes while doing matrix multiplication. They generally multiply the first row of the first matrix with the first row of the second matrix, which is wrong. They should multiply the first row of the first matrix with the first column of the second matrix to obtain the first element in matrix multiplication.
Recently Updated Pages
Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Addition of Three Vectors: Methods & Examples

Addition of Vectors: Simple Guide for Students

Algebra Made Easy: Step-by-Step Guide for Students

Relations and Functions: Complete Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

