
Let \[A = \left[ {\begin{array}{*{20}{c}}
{{a_1}} \\
{{a_2}}
\end{array}} \right]\] and \[B = \left[ {\begin{array}{*{20}{c}}
{{b_1}} \\
{{b_2}}
\end{array}} \right]\] be two \[2 \times 1\] matrices with real entries such that \[A = XB\], where \[X = \dfrac{1}{{\sqrt 3 }}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
1&k
\end{array}} \right]\] , and \[k \in R\]. If \[a_1^2 + a_2^2 = (\dfrac{2}{3})(b_1^2 + b_2^2)\] and \[({k^2} + 1)b_2^2 \ne - 2{b_1}{b_2}\], then the value of \[k\]is ________.
Answer
161.7k+ views
Hint : We are given two \[2 \times 1\] matrices \[A = \left[ {\begin{array}{*{20}{c}}
{{a_1}} \\
{{a_2}}
\end{array}} \right]\] and \[B = \left[ {\begin{array}{*{20}{c}}
{{b_1}} \\
{{b_2}}
\end{array}} \right]\] where \[A = XB\], and \[X = \dfrac{1}{{\sqrt 3 }}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
1&k
\end{array}} \right]\]. Also, it is given that \[a_1^2 + a_2^2 = (\dfrac{2}{3})(b_1^2 + b_2^2)\] and \[({k^2} + 1)b_2^2 \ne - 2{b_1}{b_2}\]. We have to find the value of \[k\] . We will be first multiplying the matrices \[B = \left[ {\begin{array}{*{20}{c}}
{{b_1}} \\
{{b_2}}
\end{array}} \right]\] and \[X = \dfrac{1}{{\sqrt 3 }}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
1&k
\end{array}} \right]\]. Then equating this with \[A = \left[ {\begin{array}{*{20}{c}}
{{a_1}} \\
{{a_2}}
\end{array}} \right]\]. Then we will find the values of \[{a_1},{a_2}\] in terms of \[{b_1},{b_2}\], we will square \[{a_1},{a_2}\] and add them. Then we will compare the resultant answer with \[(\dfrac{2}{3})(b_1^2 + b_2^2)\] to find the value of \[k\].
Formula used : Following formulae will be useful in solving the given question
\[
\left[ {{a_1}} \right] = \left[ {\begin{array}{*{20}{c}}
{{a_2}}&{{a_3}}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{{b_1}} \\
{{b_2}}
\end{array}} \right] \\
\Rightarrow {a_1} = {a_2}{b_1} + {a_3}{b_2} \\
\]
\[{(a \pm b)^2} = {a^2} \pm 2ab + {b^2}\]
Complete Step-by-step Solution:
We are given \[A = \left[ {\begin{array}{*{20}{c}}
{{a_1}} \\
{{a_2}}
\end{array}} \right]\] , \[B = \left[ {\begin{array}{*{20}{c}}
{{b_1}} \\
{{b_2}}
\end{array}} \right]\], \[X = \dfrac{1}{{\sqrt 3 }}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
1&k
\end{array}} \right]\]
On putting this value in \[A = XB\], we get
\[
A = XB \\
\;\left[ {\begin{array}{*{20}{c}}
{{a_1}} \\
{{a_2}}
\end{array}} \right] = \dfrac{1}{{\sqrt 3 }}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
1&k
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{{b_1}} \\
{{b_2}}
\end{array}} \right] \\
\;\left[ {\begin{array}{*{20}{c}}
{{a_1}} \\
{{a_2}}
\end{array}} \right] = \dfrac{1}{{\sqrt 3 }}\left[ {\begin{array}{*{20}{c}}
{{b_1} - {b_2}} \\
{{b_1} + k{b_2}}
\end{array}} \right] \\
\]
From this we can write
\[
\;{a_1} = \dfrac{1}{{\sqrt 3 }}({b_1} - {b_2}) \\
{a_2} = \dfrac{1}{{\sqrt 3 }}({b_1} + k{b_2}) \\
\]
On squaring these two values, we get
\[
{\left( {\;{a_1}} \right)^2} = {\left[ {\dfrac{1}{{\sqrt 3 }}({b_1} - {b_2})} \right]^2} \\
= \dfrac{1}{3}(b_1^2 + b_2^2 - 2{b_1}{b_2}) \\
{\left( {{a_2}} \right)^2} = {\left[ {\dfrac{1}{{\sqrt 3 }}({b_1} + k{b_2})} \right]^2} \\
= \dfrac{1}{3}(b_1^2 + {k^2}b_2^2 - 2k{b_1}{b_2}) \\
\]
Now, on summing these above values, we get
\[
{\left( {\;{a_1}} \right)^2} + {\left( {{a_2}} \right)^2} = \dfrac{1}{3}(b_1^2 + b_2^2 - 2{b_1}{b_2}) + \dfrac{1}{3}(b_1^2 + {k^2}b_2^2 - 2k{b_1}{b_2}) \\
= \dfrac{1}{3}(b_1^2 + b_2^2 - 2{b_1}{b_2} + b_1^2 + {k^2}b_2^2 + 2k{b_1}{b_2}) \\
= \dfrac{1}{3}(2b_1^2 + ({k^2} + 1)b_2^2 - 2{b_1}{b_2}(k - 1)) \\
\]
It is also given that \[a_1^2 + a_2^2 = (\dfrac{2}{3})(b_1^2 + b_2^2)\]. So, we can say that
\[
(\dfrac{2}{3})(b_1^2 + b_2^2) = \dfrac{1}{3}(2b_1^2 + ({k^2} + 1)b_2^2 - 2{b_1}{b_2}(k - 1)) \\
\dfrac{2}{3}(b_1^2 + b_2^2) = \dfrac{1}{3}(2b_1^2 + ({k^2} + 1)b_2^2 - 2{b_1}{b_2}(k - 1)) \\
\]
On multiplying both sides with \[3\]and further simplifying, we get
\[
3 \times \dfrac{2}{3}(b_1^2 + b_2^2) = 3 \times \dfrac{1}{3}(2b_1^2 + ({k^2} + 1)b_2^2 - 2{b_1}{b_2}(k - 1)) \\
2(b_1^2 + b_2^2) = 2b_1^2 + ({k^2} + 1)b_2^2 - 2{b_1}{b_2}(k - 1) \\
2b_1^2 + 2b_2^2 = 2b_1^2 + ({k^2} + 1)b_2^2 - 2{b_1}{b_2}(k - 1) \\
2b_2^2 = ({k^2} + 1)b_2^2 - 2{b_1}{b_2}(k - 1) \\
\]
On comparing L.H.S and R.H.S, we get
\[
2 = {k^2} + 1 \\
{k^2} = 1 \\
k = \pm 1 \\
\]
And
\[
- 2{b_1}{b_2}(k - 1) = 0 \\
k - 1 = 0 \\
k = 1 \\
\]
Thus value of \[k\] is \[1\]
Note : Here, students generally make mistakes while doing matrix multiplication. They generally multiply the first row of the first matrix with the first row of the second matrix, which is wrong. They should multiply the first row of the first matrix with the first column of the second matrix to obtain the first element in matrix multiplication.
{{a_1}} \\
{{a_2}}
\end{array}} \right]\] and \[B = \left[ {\begin{array}{*{20}{c}}
{{b_1}} \\
{{b_2}}
\end{array}} \right]\] where \[A = XB\], and \[X = \dfrac{1}{{\sqrt 3 }}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
1&k
\end{array}} \right]\]. Also, it is given that \[a_1^2 + a_2^2 = (\dfrac{2}{3})(b_1^2 + b_2^2)\] and \[({k^2} + 1)b_2^2 \ne - 2{b_1}{b_2}\]. We have to find the value of \[k\] . We will be first multiplying the matrices \[B = \left[ {\begin{array}{*{20}{c}}
{{b_1}} \\
{{b_2}}
\end{array}} \right]\] and \[X = \dfrac{1}{{\sqrt 3 }}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
1&k
\end{array}} \right]\]. Then equating this with \[A = \left[ {\begin{array}{*{20}{c}}
{{a_1}} \\
{{a_2}}
\end{array}} \right]\]. Then we will find the values of \[{a_1},{a_2}\] in terms of \[{b_1},{b_2}\], we will square \[{a_1},{a_2}\] and add them. Then we will compare the resultant answer with \[(\dfrac{2}{3})(b_1^2 + b_2^2)\] to find the value of \[k\].
Formula used : Following formulae will be useful in solving the given question
\[
\left[ {{a_1}} \right] = \left[ {\begin{array}{*{20}{c}}
{{a_2}}&{{a_3}}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{{b_1}} \\
{{b_2}}
\end{array}} \right] \\
\Rightarrow {a_1} = {a_2}{b_1} + {a_3}{b_2} \\
\]
\[{(a \pm b)^2} = {a^2} \pm 2ab + {b^2}\]
Complete Step-by-step Solution:
We are given \[A = \left[ {\begin{array}{*{20}{c}}
{{a_1}} \\
{{a_2}}
\end{array}} \right]\] , \[B = \left[ {\begin{array}{*{20}{c}}
{{b_1}} \\
{{b_2}}
\end{array}} \right]\], \[X = \dfrac{1}{{\sqrt 3 }}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
1&k
\end{array}} \right]\]
On putting this value in \[A = XB\], we get
\[
A = XB \\
\;\left[ {\begin{array}{*{20}{c}}
{{a_1}} \\
{{a_2}}
\end{array}} \right] = \dfrac{1}{{\sqrt 3 }}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
1&k
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{{b_1}} \\
{{b_2}}
\end{array}} \right] \\
\;\left[ {\begin{array}{*{20}{c}}
{{a_1}} \\
{{a_2}}
\end{array}} \right] = \dfrac{1}{{\sqrt 3 }}\left[ {\begin{array}{*{20}{c}}
{{b_1} - {b_2}} \\
{{b_1} + k{b_2}}
\end{array}} \right] \\
\]
From this we can write
\[
\;{a_1} = \dfrac{1}{{\sqrt 3 }}({b_1} - {b_2}) \\
{a_2} = \dfrac{1}{{\sqrt 3 }}({b_1} + k{b_2}) \\
\]
On squaring these two values, we get
\[
{\left( {\;{a_1}} \right)^2} = {\left[ {\dfrac{1}{{\sqrt 3 }}({b_1} - {b_2})} \right]^2} \\
= \dfrac{1}{3}(b_1^2 + b_2^2 - 2{b_1}{b_2}) \\
{\left( {{a_2}} \right)^2} = {\left[ {\dfrac{1}{{\sqrt 3 }}({b_1} + k{b_2})} \right]^2} \\
= \dfrac{1}{3}(b_1^2 + {k^2}b_2^2 - 2k{b_1}{b_2}) \\
\]
Now, on summing these above values, we get
\[
{\left( {\;{a_1}} \right)^2} + {\left( {{a_2}} \right)^2} = \dfrac{1}{3}(b_1^2 + b_2^2 - 2{b_1}{b_2}) + \dfrac{1}{3}(b_1^2 + {k^2}b_2^2 - 2k{b_1}{b_2}) \\
= \dfrac{1}{3}(b_1^2 + b_2^2 - 2{b_1}{b_2} + b_1^2 + {k^2}b_2^2 + 2k{b_1}{b_2}) \\
= \dfrac{1}{3}(2b_1^2 + ({k^2} + 1)b_2^2 - 2{b_1}{b_2}(k - 1)) \\
\]
It is also given that \[a_1^2 + a_2^2 = (\dfrac{2}{3})(b_1^2 + b_2^2)\]. So, we can say that
\[
(\dfrac{2}{3})(b_1^2 + b_2^2) = \dfrac{1}{3}(2b_1^2 + ({k^2} + 1)b_2^2 - 2{b_1}{b_2}(k - 1)) \\
\dfrac{2}{3}(b_1^2 + b_2^2) = \dfrac{1}{3}(2b_1^2 + ({k^2} + 1)b_2^2 - 2{b_1}{b_2}(k - 1)) \\
\]
On multiplying both sides with \[3\]and further simplifying, we get
\[
3 \times \dfrac{2}{3}(b_1^2 + b_2^2) = 3 \times \dfrac{1}{3}(2b_1^2 + ({k^2} + 1)b_2^2 - 2{b_1}{b_2}(k - 1)) \\
2(b_1^2 + b_2^2) = 2b_1^2 + ({k^2} + 1)b_2^2 - 2{b_1}{b_2}(k - 1) \\
2b_1^2 + 2b_2^2 = 2b_1^2 + ({k^2} + 1)b_2^2 - 2{b_1}{b_2}(k - 1) \\
2b_2^2 = ({k^2} + 1)b_2^2 - 2{b_1}{b_2}(k - 1) \\
\]
On comparing L.H.S and R.H.S, we get
\[
2 = {k^2} + 1 \\
{k^2} = 1 \\
k = \pm 1 \\
\]
And
\[
- 2{b_1}{b_2}(k - 1) = 0 \\
k - 1 = 0 \\
k = 1 \\
\]
Thus value of \[k\] is \[1\]
Note : Here, students generally make mistakes while doing matrix multiplication. They generally multiply the first row of the first matrix with the first row of the second matrix, which is wrong. They should multiply the first row of the first matrix with the first column of the second matrix to obtain the first element in matrix multiplication.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2026 Syllabus PDF - Download Paper 1 and 2 Syllabus by NTA

JEE Main Eligibility Criteria 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes
