
Let \[A = \left[ {\begin{array}{*{20}{c}}
{{a_1}} \\
{{a_2}}
\end{array}} \right]\] and \[B = \left[ {\begin{array}{*{20}{c}}
{{b_1}} \\
{{b_2}}
\end{array}} \right]\] be two \[2 \times 1\] matrices with real entries such that \[A = XB\], where \[X = \dfrac{1}{{\sqrt 3 }}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
1&k
\end{array}} \right]\] , and \[k \in R\]. If \[a_1^2 + a_2^2 = (\dfrac{2}{3})(b_1^2 + b_2^2)\] and \[({k^2} + 1)b_2^2 \ne - 2{b_1}{b_2}\], then the value of \[k\]is ________.
Answer
232.8k+ views
Hint : We are given two \[2 \times 1\] matrices \[A = \left[ {\begin{array}{*{20}{c}}
{{a_1}} \\
{{a_2}}
\end{array}} \right]\] and \[B = \left[ {\begin{array}{*{20}{c}}
{{b_1}} \\
{{b_2}}
\end{array}} \right]\] where \[A = XB\], and \[X = \dfrac{1}{{\sqrt 3 }}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
1&k
\end{array}} \right]\]. Also, it is given that \[a_1^2 + a_2^2 = (\dfrac{2}{3})(b_1^2 + b_2^2)\] and \[({k^2} + 1)b_2^2 \ne - 2{b_1}{b_2}\]. We have to find the value of \[k\] . We will be first multiplying the matrices \[B = \left[ {\begin{array}{*{20}{c}}
{{b_1}} \\
{{b_2}}
\end{array}} \right]\] and \[X = \dfrac{1}{{\sqrt 3 }}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
1&k
\end{array}} \right]\]. Then equating this with \[A = \left[ {\begin{array}{*{20}{c}}
{{a_1}} \\
{{a_2}}
\end{array}} \right]\]. Then we will find the values of \[{a_1},{a_2}\] in terms of \[{b_1},{b_2}\], we will square \[{a_1},{a_2}\] and add them. Then we will compare the resultant answer with \[(\dfrac{2}{3})(b_1^2 + b_2^2)\] to find the value of \[k\].
Formula used : Following formulae will be useful in solving the given question
\[
\left[ {{a_1}} \right] = \left[ {\begin{array}{*{20}{c}}
{{a_2}}&{{a_3}}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{{b_1}} \\
{{b_2}}
\end{array}} \right] \\
\Rightarrow {a_1} = {a_2}{b_1} + {a_3}{b_2} \\
\]
\[{(a \pm b)^2} = {a^2} \pm 2ab + {b^2}\]
Complete Step-by-step Solution:
We are given \[A = \left[ {\begin{array}{*{20}{c}}
{{a_1}} \\
{{a_2}}
\end{array}} \right]\] , \[B = \left[ {\begin{array}{*{20}{c}}
{{b_1}} \\
{{b_2}}
\end{array}} \right]\], \[X = \dfrac{1}{{\sqrt 3 }}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
1&k
\end{array}} \right]\]
On putting this value in \[A = XB\], we get
\[
A = XB \\
\;\left[ {\begin{array}{*{20}{c}}
{{a_1}} \\
{{a_2}}
\end{array}} \right] = \dfrac{1}{{\sqrt 3 }}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
1&k
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{{b_1}} \\
{{b_2}}
\end{array}} \right] \\
\;\left[ {\begin{array}{*{20}{c}}
{{a_1}} \\
{{a_2}}
\end{array}} \right] = \dfrac{1}{{\sqrt 3 }}\left[ {\begin{array}{*{20}{c}}
{{b_1} - {b_2}} \\
{{b_1} + k{b_2}}
\end{array}} \right] \\
\]
From this we can write
\[
\;{a_1} = \dfrac{1}{{\sqrt 3 }}({b_1} - {b_2}) \\
{a_2} = \dfrac{1}{{\sqrt 3 }}({b_1} + k{b_2}) \\
\]
On squaring these two values, we get
\[
{\left( {\;{a_1}} \right)^2} = {\left[ {\dfrac{1}{{\sqrt 3 }}({b_1} - {b_2})} \right]^2} \\
= \dfrac{1}{3}(b_1^2 + b_2^2 - 2{b_1}{b_2}) \\
{\left( {{a_2}} \right)^2} = {\left[ {\dfrac{1}{{\sqrt 3 }}({b_1} + k{b_2})} \right]^2} \\
= \dfrac{1}{3}(b_1^2 + {k^2}b_2^2 - 2k{b_1}{b_2}) \\
\]
Now, on summing these above values, we get
\[
{\left( {\;{a_1}} \right)^2} + {\left( {{a_2}} \right)^2} = \dfrac{1}{3}(b_1^2 + b_2^2 - 2{b_1}{b_2}) + \dfrac{1}{3}(b_1^2 + {k^2}b_2^2 - 2k{b_1}{b_2}) \\
= \dfrac{1}{3}(b_1^2 + b_2^2 - 2{b_1}{b_2} + b_1^2 + {k^2}b_2^2 + 2k{b_1}{b_2}) \\
= \dfrac{1}{3}(2b_1^2 + ({k^2} + 1)b_2^2 - 2{b_1}{b_2}(k - 1)) \\
\]
It is also given that \[a_1^2 + a_2^2 = (\dfrac{2}{3})(b_1^2 + b_2^2)\]. So, we can say that
\[
(\dfrac{2}{3})(b_1^2 + b_2^2) = \dfrac{1}{3}(2b_1^2 + ({k^2} + 1)b_2^2 - 2{b_1}{b_2}(k - 1)) \\
\dfrac{2}{3}(b_1^2 + b_2^2) = \dfrac{1}{3}(2b_1^2 + ({k^2} + 1)b_2^2 - 2{b_1}{b_2}(k - 1)) \\
\]
On multiplying both sides with \[3\]and further simplifying, we get
\[
3 \times \dfrac{2}{3}(b_1^2 + b_2^2) = 3 \times \dfrac{1}{3}(2b_1^2 + ({k^2} + 1)b_2^2 - 2{b_1}{b_2}(k - 1)) \\
2(b_1^2 + b_2^2) = 2b_1^2 + ({k^2} + 1)b_2^2 - 2{b_1}{b_2}(k - 1) \\
2b_1^2 + 2b_2^2 = 2b_1^2 + ({k^2} + 1)b_2^2 - 2{b_1}{b_2}(k - 1) \\
2b_2^2 = ({k^2} + 1)b_2^2 - 2{b_1}{b_2}(k - 1) \\
\]
On comparing L.H.S and R.H.S, we get
\[
2 = {k^2} + 1 \\
{k^2} = 1 \\
k = \pm 1 \\
\]
And
\[
- 2{b_1}{b_2}(k - 1) = 0 \\
k - 1 = 0 \\
k = 1 \\
\]
Thus value of \[k\] is \[1\]
Note : Here, students generally make mistakes while doing matrix multiplication. They generally multiply the first row of the first matrix with the first row of the second matrix, which is wrong. They should multiply the first row of the first matrix with the first column of the second matrix to obtain the first element in matrix multiplication.
{{a_1}} \\
{{a_2}}
\end{array}} \right]\] and \[B = \left[ {\begin{array}{*{20}{c}}
{{b_1}} \\
{{b_2}}
\end{array}} \right]\] where \[A = XB\], and \[X = \dfrac{1}{{\sqrt 3 }}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
1&k
\end{array}} \right]\]. Also, it is given that \[a_1^2 + a_2^2 = (\dfrac{2}{3})(b_1^2 + b_2^2)\] and \[({k^2} + 1)b_2^2 \ne - 2{b_1}{b_2}\]. We have to find the value of \[k\] . We will be first multiplying the matrices \[B = \left[ {\begin{array}{*{20}{c}}
{{b_1}} \\
{{b_2}}
\end{array}} \right]\] and \[X = \dfrac{1}{{\sqrt 3 }}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
1&k
\end{array}} \right]\]. Then equating this with \[A = \left[ {\begin{array}{*{20}{c}}
{{a_1}} \\
{{a_2}}
\end{array}} \right]\]. Then we will find the values of \[{a_1},{a_2}\] in terms of \[{b_1},{b_2}\], we will square \[{a_1},{a_2}\] and add them. Then we will compare the resultant answer with \[(\dfrac{2}{3})(b_1^2 + b_2^2)\] to find the value of \[k\].
Formula used : Following formulae will be useful in solving the given question
\[
\left[ {{a_1}} \right] = \left[ {\begin{array}{*{20}{c}}
{{a_2}}&{{a_3}}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{{b_1}} \\
{{b_2}}
\end{array}} \right] \\
\Rightarrow {a_1} = {a_2}{b_1} + {a_3}{b_2} \\
\]
\[{(a \pm b)^2} = {a^2} \pm 2ab + {b^2}\]
Complete Step-by-step Solution:
We are given \[A = \left[ {\begin{array}{*{20}{c}}
{{a_1}} \\
{{a_2}}
\end{array}} \right]\] , \[B = \left[ {\begin{array}{*{20}{c}}
{{b_1}} \\
{{b_2}}
\end{array}} \right]\], \[X = \dfrac{1}{{\sqrt 3 }}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
1&k
\end{array}} \right]\]
On putting this value in \[A = XB\], we get
\[
A = XB \\
\;\left[ {\begin{array}{*{20}{c}}
{{a_1}} \\
{{a_2}}
\end{array}} \right] = \dfrac{1}{{\sqrt 3 }}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
1&k
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{{b_1}} \\
{{b_2}}
\end{array}} \right] \\
\;\left[ {\begin{array}{*{20}{c}}
{{a_1}} \\
{{a_2}}
\end{array}} \right] = \dfrac{1}{{\sqrt 3 }}\left[ {\begin{array}{*{20}{c}}
{{b_1} - {b_2}} \\
{{b_1} + k{b_2}}
\end{array}} \right] \\
\]
From this we can write
\[
\;{a_1} = \dfrac{1}{{\sqrt 3 }}({b_1} - {b_2}) \\
{a_2} = \dfrac{1}{{\sqrt 3 }}({b_1} + k{b_2}) \\
\]
On squaring these two values, we get
\[
{\left( {\;{a_1}} \right)^2} = {\left[ {\dfrac{1}{{\sqrt 3 }}({b_1} - {b_2})} \right]^2} \\
= \dfrac{1}{3}(b_1^2 + b_2^2 - 2{b_1}{b_2}) \\
{\left( {{a_2}} \right)^2} = {\left[ {\dfrac{1}{{\sqrt 3 }}({b_1} + k{b_2})} \right]^2} \\
= \dfrac{1}{3}(b_1^2 + {k^2}b_2^2 - 2k{b_1}{b_2}) \\
\]
Now, on summing these above values, we get
\[
{\left( {\;{a_1}} \right)^2} + {\left( {{a_2}} \right)^2} = \dfrac{1}{3}(b_1^2 + b_2^2 - 2{b_1}{b_2}) + \dfrac{1}{3}(b_1^2 + {k^2}b_2^2 - 2k{b_1}{b_2}) \\
= \dfrac{1}{3}(b_1^2 + b_2^2 - 2{b_1}{b_2} + b_1^2 + {k^2}b_2^2 + 2k{b_1}{b_2}) \\
= \dfrac{1}{3}(2b_1^2 + ({k^2} + 1)b_2^2 - 2{b_1}{b_2}(k - 1)) \\
\]
It is also given that \[a_1^2 + a_2^2 = (\dfrac{2}{3})(b_1^2 + b_2^2)\]. So, we can say that
\[
(\dfrac{2}{3})(b_1^2 + b_2^2) = \dfrac{1}{3}(2b_1^2 + ({k^2} + 1)b_2^2 - 2{b_1}{b_2}(k - 1)) \\
\dfrac{2}{3}(b_1^2 + b_2^2) = \dfrac{1}{3}(2b_1^2 + ({k^2} + 1)b_2^2 - 2{b_1}{b_2}(k - 1)) \\
\]
On multiplying both sides with \[3\]and further simplifying, we get
\[
3 \times \dfrac{2}{3}(b_1^2 + b_2^2) = 3 \times \dfrac{1}{3}(2b_1^2 + ({k^2} + 1)b_2^2 - 2{b_1}{b_2}(k - 1)) \\
2(b_1^2 + b_2^2) = 2b_1^2 + ({k^2} + 1)b_2^2 - 2{b_1}{b_2}(k - 1) \\
2b_1^2 + 2b_2^2 = 2b_1^2 + ({k^2} + 1)b_2^2 - 2{b_1}{b_2}(k - 1) \\
2b_2^2 = ({k^2} + 1)b_2^2 - 2{b_1}{b_2}(k - 1) \\
\]
On comparing L.H.S and R.H.S, we get
\[
2 = {k^2} + 1 \\
{k^2} = 1 \\
k = \pm 1 \\
\]
And
\[
- 2{b_1}{b_2}(k - 1) = 0 \\
k - 1 = 0 \\
k = 1 \\
\]
Thus value of \[k\] is \[1\]
Note : Here, students generally make mistakes while doing matrix multiplication. They generally multiply the first row of the first matrix with the first row of the second matrix, which is wrong. They should multiply the first row of the first matrix with the first column of the second matrix to obtain the first element in matrix multiplication.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

