
${{K}_{sp}}$ of $\text{CuS}$, $\text{A}{{\text{g}}_{\text{2}}}\text{S}$ and $\text{HgS}$ are${{10}^{-31}}$, ${{10}^{-44}}$ and ${{10}^{-54}}$ respectively. Select the correct order for their solubility in water:
(A) $\text{A}{{\text{g}}_{\text{2}}}\text{S}$>$\text{HgS}$>$\text{CuS}$
(B) $\text{HgS}$>$\text{CuS}$>$\text{A}{{\text{g}}_{\text{2}}}\text{S}$
(C) $\text{HgS}$>$\text{A}{{\text{g}}_{\text{2}}}\text{S}$>$\text{CuS}$
(D) $\text{A}{{\text{g}}_{\text{2}}}\text{S}$>$\text{CuS}$>$\text{HgS}$
Answer
222k+ views
Hint: ${{K}_{sp}}$ is the solubility product constant of a solid solute dissolving in a solvent. So, think about the relation between solubility product constants and solubility of a solute in a solvent. Then substitute the values of ${{K}_{sp}}$ and find the solubility of each of the given solutes. Higher the value of solubility, higher will be the solubility of that solute in water.
Complete step by step solution:
-${{K}_{sp}}$ is the solubility product constant of a solid solute dissolving in a solvent.
-Let’s start by determining ${{K}_{sp}}$ for each solute and then find their solubility.
-For $\text{CuS}$, $\text{CuS}\to C{{u}^{2+}}+{{S}^{2-}}$ so, ${{K}_{sp}}=\left[ C{{u}^{2+}} \right]\left[ {{S}^{2-}} \right]=S\times S={{S}^{2}}$ where S is the solubility. Therefore, \[{{K}_{sp}}={{S}^{2}}\].
-Now, let’s calculate its solubility for $\text{CuS}$. So, \[S={{\left( {{10}^{-31}} \right)}^{{}^{1}/{}_{2}}}=3.162\times {{10}^{-16}}\]
-Similarly for $\text{HgS}$, $\text{HgS}\to H{{g}^{2+}}+{{S}^{2-}}$ so, ${{K}_{sp}}=\left[ H{{g}^{2+}} \right]\left[ {{S}^{2-}} \right]=S\times S={{S}^{2}}$ where S is the solubility. Therefore, \[{{K}_{sp}}={{S}^{2}}\].
-Hence, solubility of $\text{HgS}$, \[S={{\left( {{10}^{-54}} \right)}^{{}^{1}/{}_{2}}}={{10}^{-27}}\]
-No, let’s calculate for $\text{A}{{\text{g}}_{\text{2}}}\text{S}$. $\text{A}{{\text{g}}_{\text{2}}}\text{S}\to 2\text{A}{{\text{g}}^{+}}+{{S}^{2-}}$ so, ${{K}_{sp}}={{\left[ \text{A}{{\text{g}}^{+}} \right]}^{2}}\left[ {{S}^{2-}} \right]={{\left( 2S \right)}^{2}}\times S=4{{S}^{3}}$ where S is the solubility. Here concentration of Ag is 2S because two silver ions are formed after dissociation of silver sulphide.
-Thus, solubility of $\text{A}{{\text{g}}_{\text{2}}}\text{S}$, \[S={{\left( \dfrac{\left( {{10}^{-44}} \right)}{4} \right)}^{{}^{1}/{}_{3}}}=1.357\times {{10}^{-15}}\].
-Therefore, silver sulphide has the highest solubility value followed by copper sulphide and then mercury sulphide.
-We know that, higher the solubility value, higher is the solubility.
-Therefore, solubility order is $\text{A}{{\text{g}}_{\text{2}}}\text{S}$>$\text{CuS}$>$\text{HgS}$.
Therefore, the correct option is (D).
Note: Remember solubility product constant and solubility are different terminologies. Higher the solubility value, higher is the solubility. Solubility values are calculated using solubility product constant with the help of the dissociation reaction of solute.
Complete step by step solution:
-${{K}_{sp}}$ is the solubility product constant of a solid solute dissolving in a solvent.
-Let’s start by determining ${{K}_{sp}}$ for each solute and then find their solubility.
-For $\text{CuS}$, $\text{CuS}\to C{{u}^{2+}}+{{S}^{2-}}$ so, ${{K}_{sp}}=\left[ C{{u}^{2+}} \right]\left[ {{S}^{2-}} \right]=S\times S={{S}^{2}}$ where S is the solubility. Therefore, \[{{K}_{sp}}={{S}^{2}}\].
-Now, let’s calculate its solubility for $\text{CuS}$. So, \[S={{\left( {{10}^{-31}} \right)}^{{}^{1}/{}_{2}}}=3.162\times {{10}^{-16}}\]
-Similarly for $\text{HgS}$, $\text{HgS}\to H{{g}^{2+}}+{{S}^{2-}}$ so, ${{K}_{sp}}=\left[ H{{g}^{2+}} \right]\left[ {{S}^{2-}} \right]=S\times S={{S}^{2}}$ where S is the solubility. Therefore, \[{{K}_{sp}}={{S}^{2}}\].
-Hence, solubility of $\text{HgS}$, \[S={{\left( {{10}^{-54}} \right)}^{{}^{1}/{}_{2}}}={{10}^{-27}}\]
-No, let’s calculate for $\text{A}{{\text{g}}_{\text{2}}}\text{S}$. $\text{A}{{\text{g}}_{\text{2}}}\text{S}\to 2\text{A}{{\text{g}}^{+}}+{{S}^{2-}}$ so, ${{K}_{sp}}={{\left[ \text{A}{{\text{g}}^{+}} \right]}^{2}}\left[ {{S}^{2-}} \right]={{\left( 2S \right)}^{2}}\times S=4{{S}^{3}}$ where S is the solubility. Here concentration of Ag is 2S because two silver ions are formed after dissociation of silver sulphide.
-Thus, solubility of $\text{A}{{\text{g}}_{\text{2}}}\text{S}$, \[S={{\left( \dfrac{\left( {{10}^{-44}} \right)}{4} \right)}^{{}^{1}/{}_{3}}}=1.357\times {{10}^{-15}}\].
-Therefore, silver sulphide has the highest solubility value followed by copper sulphide and then mercury sulphide.
-We know that, higher the solubility value, higher is the solubility.
-Therefore, solubility order is $\text{A}{{\text{g}}_{\text{2}}}\text{S}$>$\text{CuS}$>$\text{HgS}$.
Therefore, the correct option is (D).
Note: Remember solubility product constant and solubility are different terminologies. Higher the solubility value, higher is the solubility. Solubility values are calculated using solubility product constant with the help of the dissociation reaction of solute.
Recently Updated Pages
Types of Solutions in Chemistry: Explained Simply

States of Matter Chapter For JEE Main Chemistry

Know The Difference Between Fluid And Liquid

Difference Between Crystalline and Amorphous Solid: Table & Examples

Conduction Explained: Definition, Examples & Science for Students

Balancing of Redox Reactions - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

NCERT Solutions ForClass 11 Chemistry Chapter Chapter 5 Thermodynamics

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

