
How do you know if an exponential function is increasing or decreasing?
Answer
190.2k+ views
Hint: We know that the general form of the exponential function is $f(x) = {b^x}$ where $b$ must be a positive number, not greater than or equal to zero, and is called the base, and x is called the exponent of the function. So, we use this general form to answer the given question.
Complete step by step solution:
We know that the general form of the exponential function is
$f(x) = {b^x}$ where $b$ must be a positive number and not greater than one.
Now let us assume that $f(x)$is a function ${D_f}$ as its domain and the range of an exponential function is $\left( {0,\infty } \right)$
Now we take us an example ${f'}(x) = {b^x}$
Here, three cases arise:
1. $x > 0$
2. $x < 0$
3. $x = 0$
Now,
when $x > 0$ then the overall function is greater than zero,
when $x < 0$ then we will get a positive quantity in the denominator which is greater than zero,
and when $x = 0$ then we will get a function equal to $1$ which again is greater than zero.
Thus, in all three cases, we came to know that ${f'}(x) = {b^x} > 0$.
Hence, the exponential function is an increasing function
Additional Information: Exponential functions can be used to model things that do not take on negative values and that grow or decay very quickly. We will often see them when looking at things like the number of bacteria in a culture, or in investments that earn compound interest.
Note: The exponential function is a type of mathematical function that is slightly less essential than the linear function. Exponential functions offer the most straightforward solutions to dynamic systems. They can be related to the growth or degradation of a system’s process over time.
Complete step by step solution:
We know that the general form of the exponential function is
$f(x) = {b^x}$ where $b$ must be a positive number and not greater than one.
Now let us assume that $f(x)$is a function ${D_f}$ as its domain and the range of an exponential function is $\left( {0,\infty } \right)$
Now we take us an example ${f'}(x) = {b^x}$
Here, three cases arise:
1. $x > 0$
2. $x < 0$
3. $x = 0$
Now,
when $x > 0$ then the overall function is greater than zero,
when $x < 0$ then we will get a positive quantity in the denominator which is greater than zero,
and when $x = 0$ then we will get a function equal to $1$ which again is greater than zero.
Thus, in all three cases, we came to know that ${f'}(x) = {b^x} > 0$.
Hence, the exponential function is an increasing function
Additional Information: Exponential functions can be used to model things that do not take on negative values and that grow or decay very quickly. We will often see them when looking at things like the number of bacteria in a culture, or in investments that earn compound interest.
Note: The exponential function is a type of mathematical function that is slightly less essential than the linear function. Exponential functions offer the most straightforward solutions to dynamic systems. They can be related to the growth or degradation of a system’s process over time.
Recently Updated Pages
Difference Between Area and Volume

Difference Between Mutually Exclusive and Independent Events

Area of an Octagon Formula - Explanation, and FAQs

Difference Between Vapor and Gas: JEE Main 2026

Carbon Dioxide Formula - Definition, Uses and FAQs

Absolute Pressure Formula - Explanation, and FAQs

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Equation of Trajectory in Projectile Motion: Derivation & Proof

Atomic Structure: Definition, Models, and Examples

Angle of Deviation in a Prism – Formula, Diagram & Applications

Hybridisation in Chemistry – Concept, Types & Applications

Collision: Meaning, Types & Examples in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Elastic Collisions in One Dimension: Concepts, Derivation, and Examples

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Average and RMS Value in Physics: Formula, Comparison & Application

Electric Field Due to a Uniformly Charged Ring Explained
