
Inverse matrix of $\left[ \begin{matrix} 4 & 7 \\ 1 & 2 \\ \end{matrix} \right]$ [RPET 1996, 2001]
A. $\left[ \begin{matrix} 2 & -7 \\ -1 & 4 \\ \end{matrix} \right]$
B. $\left[ \begin{matrix} 2 & -1 \\ -7 & 4 \\ \end{matrix} \right]$
C. $\left[ \begin{matrix} -2 & 7 \\ 1 & -4 \\ \end{matrix} \right]$
D. $\left[ \begin{matrix} -2 & 1 \\ 7 & -4 \\ \end{matrix} \right]$
Answer
216.6k+ views
Hint:
Using the determinant and adjoint of the given matrix you can determine the inverse of the matrix.
Formula Used:
Inverse matrix formula $A^{-1}=\dfrac{adjA}{|A|}$
Complete step-by-step solution:
Let $A=\left[ \begin{matrix} 4 & 7 \\ 1 & 2 \\ \end{matrix} \right]$
Determinant;
$|A|=(4\times2)-(7\times1)\\
|A|=8-7\\
|A|=1$
Now, the Adjoint of A can be determined by alternating the main diagonal components. Simply swap the signs of the components in the other diagonal, taking care not to interchange them.
Now, Adjoint of $A=\left[ \begin{matrix} 2 & -7 \\ -1 & 4 \\ \end{matrix} \right]$
Therefore,
$A^{-1}=\dfrac{1}{1}.\left[ \begin{matrix} 2 & -7 \\ -1 & 4 \\ \end{matrix} \right]\\
A^{-1}=\left[ \begin{matrix} 2 & -7 \\ -1 & 4 \\ \end{matrix} \right]$
So, option is A correct.
Note:
${{A}^{-1}}$ exists only when $|A|\ne 0$. We have to remember the formula for ${{A}^{-1}}$. Sometimes students make mistakes while solving $adjA$ and $|A|$ for a matrix. If the inverse of a matrix exists, we can find the adjoint of the given matrix and divide it by the determinant of the matrix.
Using the determinant and adjoint of the given matrix you can determine the inverse of the matrix.
Formula Used:
Inverse matrix formula $A^{-1}=\dfrac{adjA}{|A|}$
Complete step-by-step solution:
Let $A=\left[ \begin{matrix} 4 & 7 \\ 1 & 2 \\ \end{matrix} \right]$
Determinant;
$|A|=(4\times2)-(7\times1)\\
|A|=8-7\\
|A|=1$
Now, the Adjoint of A can be determined by alternating the main diagonal components. Simply swap the signs of the components in the other diagonal, taking care not to interchange them.
Now, Adjoint of $A=\left[ \begin{matrix} 2 & -7 \\ -1 & 4 \\ \end{matrix} \right]$
Therefore,
$A^{-1}=\dfrac{1}{1}.\left[ \begin{matrix} 2 & -7 \\ -1 & 4 \\ \end{matrix} \right]\\
A^{-1}=\left[ \begin{matrix} 2 & -7 \\ -1 & 4 \\ \end{matrix} \right]$
So, option is A correct.
Note:
${{A}^{-1}}$ exists only when $|A|\ne 0$. We have to remember the formula for ${{A}^{-1}}$. Sometimes students make mistakes while solving $adjA$ and $|A|$ for a matrix. If the inverse of a matrix exists, we can find the adjoint of the given matrix and divide it by the determinant of the matrix.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

