
Inverse matrix of $\left[ \begin{matrix} 4 & 7 \\ 1 & 2 \\ \end{matrix} \right]$ [RPET 1996, 2001]
A. $\left[ \begin{matrix} 2 & -7 \\ -1 & 4 \\ \end{matrix} \right]$
B. $\left[ \begin{matrix} 2 & -1 \\ -7 & 4 \\ \end{matrix} \right]$
C. $\left[ \begin{matrix} -2 & 7 \\ 1 & -4 \\ \end{matrix} \right]$
D. $\left[ \begin{matrix} -2 & 1 \\ 7 & -4 \\ \end{matrix} \right]$
Answer
232.8k+ views
Hint:
Using the determinant and adjoint of the given matrix you can determine the inverse of the matrix.
Formula Used:
Inverse matrix formula $A^{-1}=\dfrac{adjA}{|A|}$
Complete step-by-step solution:
Let $A=\left[ \begin{matrix} 4 & 7 \\ 1 & 2 \\ \end{matrix} \right]$
Determinant;
$|A|=(4\times2)-(7\times1)\\
|A|=8-7\\
|A|=1$
Now, the Adjoint of A can be determined by alternating the main diagonal components. Simply swap the signs of the components in the other diagonal, taking care not to interchange them.
Now, Adjoint of $A=\left[ \begin{matrix} 2 & -7 \\ -1 & 4 \\ \end{matrix} \right]$
Therefore,
$A^{-1}=\dfrac{1}{1}.\left[ \begin{matrix} 2 & -7 \\ -1 & 4 \\ \end{matrix} \right]\\
A^{-1}=\left[ \begin{matrix} 2 & -7 \\ -1 & 4 \\ \end{matrix} \right]$
So, option is A correct.
Note:
${{A}^{-1}}$ exists only when $|A|\ne 0$. We have to remember the formula for ${{A}^{-1}}$. Sometimes students make mistakes while solving $adjA$ and $|A|$ for a matrix. If the inverse of a matrix exists, we can find the adjoint of the given matrix and divide it by the determinant of the matrix.
Using the determinant and adjoint of the given matrix you can determine the inverse of the matrix.
Formula Used:
Inverse matrix formula $A^{-1}=\dfrac{adjA}{|A|}$
Complete step-by-step solution:
Let $A=\left[ \begin{matrix} 4 & 7 \\ 1 & 2 \\ \end{matrix} \right]$
Determinant;
$|A|=(4\times2)-(7\times1)\\
|A|=8-7\\
|A|=1$
Now, the Adjoint of A can be determined by alternating the main diagonal components. Simply swap the signs of the components in the other diagonal, taking care not to interchange them.
Now, Adjoint of $A=\left[ \begin{matrix} 2 & -7 \\ -1 & 4 \\ \end{matrix} \right]$
Therefore,
$A^{-1}=\dfrac{1}{1}.\left[ \begin{matrix} 2 & -7 \\ -1 & 4 \\ \end{matrix} \right]\\
A^{-1}=\left[ \begin{matrix} 2 & -7 \\ -1 & 4 \\ \end{matrix} \right]$
So, option is A correct.
Note:
${{A}^{-1}}$ exists only when $|A|\ne 0$. We have to remember the formula for ${{A}^{-1}}$. Sometimes students make mistakes while solving $adjA$ and $|A|$ for a matrix. If the inverse of a matrix exists, we can find the adjoint of the given matrix and divide it by the determinant of the matrix.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Inductive Effect and Its Role in Acidic Strength

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

