
$\int\limits_{0}^{1}{f(1-x)dx}$ has the same value as the integral
A. \[\int\limits_{0}^{1}{f(x)dx}\]
B. \[\int\limits_{0}^{1}{f(-x)dx}\]
C. \[\int\limits_{0}^{1}{f(x-1)dx}\]
D. \[\int\limits_{-1}^{1}{f(x)dx}\]
Answer
216.3k+ views
Hint: In this question, we are to find the integral which is the same as the given integral. For this, the variable substitution method is applied in the given integral. So, that the required integral will be obtained.
Formula Used:Definite integral:
Consider a function $f(x)$ is defined on $[a,b]$. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called the definite integral of the function $f(x)$ over $[a,b]$.
I.e.,$\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$ - lower limit and $b$- upper limit.
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a3) $\int\limits_{0}^{a}{f(x)dx}=\int\limits_{0}^{a}{f(a-x)dx}$
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
5) $\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
Complete step by step solution:Given integral is
$I=\int\limits_{0}^{1}{f(1-x)dx}$
Substituting $1-x=t$
So, we can write $x=1-t\Rightarrow dx=-dt$
Then, the limits become
If $x=0$, then $t=1-0=1$
If $x=1$, then $t=1-1=0$
On substituting all these in the given integral, we get
$\begin{align}
& I=\int\limits_{0}^{1}{f(1-x)dx} \\
& \text{ }=\int\limits_{1}^{0}{f(t)(-dt)} \\
& \text{ }=-\int\limits_{0}^{1}{f(t)(-dt)} \\
& \text{ }=\int\limits_{0}^{1}{f(t)dt} \\
\end{align}$
Thus, we can write
$\int\limits_{0}^{1}{f(t)dt}=\int\limits_{0}^{1}{f(x)dx}$
Therefore, the integral that is the same as the given integral is
$\int\limits_{0}^{1}{f(1-x)dx}=\int\limits_{0}^{1}{f(x)dx}$
Option ‘A’ is correct
Note: Here, we applied the substitution method to evaluate the integral. Here we may forget to change the limits. It is just that the limits should be altered as per the substituting variable. This method of solving an integral is an easy way of evaluating a definite integral.
Formula Used:Definite integral:
Consider a function $f(x)$ is defined on $[a,b]$. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called the definite integral of the function $f(x)$ over $[a,b]$.
I.e.,$\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$ - lower limit and $b$- upper limit.
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
5) $\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
Complete step by step solution:Given integral is
$I=\int\limits_{0}^{1}{f(1-x)dx}$
Substituting $1-x=t$
So, we can write $x=1-t\Rightarrow dx=-dt$
Then, the limits become
If $x=0$, then $t=1-0=1$
If $x=1$, then $t=1-1=0$
On substituting all these in the given integral, we get
$\begin{align}
& I=\int\limits_{0}^{1}{f(1-x)dx} \\
& \text{ }=\int\limits_{1}^{0}{f(t)(-dt)} \\
& \text{ }=-\int\limits_{0}^{1}{f(t)(-dt)} \\
& \text{ }=\int\limits_{0}^{1}{f(t)dt} \\
\end{align}$
Thus, we can write
$\int\limits_{0}^{1}{f(t)dt}=\int\limits_{0}^{1}{f(x)dx}$
Therefore, the integral that is the same as the given integral is
$\int\limits_{0}^{1}{f(1-x)dx}=\int\limits_{0}^{1}{f(x)dx}$
Option ‘A’ is correct
Note: Here, we applied the substitution method to evaluate the integral. Here we may forget to change the limits. It is just that the limits should be altered as per the substituting variable. This method of solving an integral is an easy way of evaluating a definite integral.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

