
$\int\limits_{0}^{1}{f(1-x)dx}$ has the same value as the integral
A. \[\int\limits_{0}^{1}{f(x)dx}\]
B. \[\int\limits_{0}^{1}{f(-x)dx}\]
C. \[\int\limits_{0}^{1}{f(x-1)dx}\]
D. \[\int\limits_{-1}^{1}{f(x)dx}\]
Answer
161.1k+ views
Hint: In this question, we are to find the integral which is the same as the given integral. For this, the variable substitution method is applied in the given integral. So, that the required integral will be obtained.
Formula Used:Definite integral:
Consider a function $f(x)$ is defined on $[a,b]$. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called the definite integral of the function $f(x)$ over $[a,b]$.
I.e.,$\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$ - lower limit and $b$- upper limit.
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a3) $\int\limits_{0}^{a}{f(x)dx}=\int\limits_{0}^{a}{f(a-x)dx}$
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
5) $\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
Complete step by step solution:Given integral is
$I=\int\limits_{0}^{1}{f(1-x)dx}$
Substituting $1-x=t$
So, we can write $x=1-t\Rightarrow dx=-dt$
Then, the limits become
If $x=0$, then $t=1-0=1$
If $x=1$, then $t=1-1=0$
On substituting all these in the given integral, we get
$\begin{align}
& I=\int\limits_{0}^{1}{f(1-x)dx} \\
& \text{ }=\int\limits_{1}^{0}{f(t)(-dt)} \\
& \text{ }=-\int\limits_{0}^{1}{f(t)(-dt)} \\
& \text{ }=\int\limits_{0}^{1}{f(t)dt} \\
\end{align}$
Thus, we can write
$\int\limits_{0}^{1}{f(t)dt}=\int\limits_{0}^{1}{f(x)dx}$
Therefore, the integral that is the same as the given integral is
$\int\limits_{0}^{1}{f(1-x)dx}=\int\limits_{0}^{1}{f(x)dx}$
Option ‘A’ is correct
Note: Here, we applied the substitution method to evaluate the integral. Here we may forget to change the limits. It is just that the limits should be altered as per the substituting variable. This method of solving an integral is an easy way of evaluating a definite integral.
Formula Used:Definite integral:
Consider a function $f(x)$ is defined on $[a,b]$. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called the definite integral of the function $f(x)$ over $[a,b]$.
I.e.,$\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$ - lower limit and $b$- upper limit.
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
5) $\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
Complete step by step solution:Given integral is
$I=\int\limits_{0}^{1}{f(1-x)dx}$
Substituting $1-x=t$
So, we can write $x=1-t\Rightarrow dx=-dt$
Then, the limits become
If $x=0$, then $t=1-0=1$
If $x=1$, then $t=1-1=0$
On substituting all these in the given integral, we get
$\begin{align}
& I=\int\limits_{0}^{1}{f(1-x)dx} \\
& \text{ }=\int\limits_{1}^{0}{f(t)(-dt)} \\
& \text{ }=-\int\limits_{0}^{1}{f(t)(-dt)} \\
& \text{ }=\int\limits_{0}^{1}{f(t)dt} \\
\end{align}$
Thus, we can write
$\int\limits_{0}^{1}{f(t)dt}=\int\limits_{0}^{1}{f(x)dx}$
Therefore, the integral that is the same as the given integral is
$\int\limits_{0}^{1}{f(1-x)dx}=\int\limits_{0}^{1}{f(x)dx}$
Option ‘A’ is correct
Note: Here, we applied the substitution method to evaluate the integral. Here we may forget to change the limits. It is just that the limits should be altered as per the substituting variable. This method of solving an integral is an easy way of evaluating a definite integral.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025 Notes

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
