
Integral of \[\int {\dfrac{{dx}}{{\cos x + \sqrt 3 \sin x}}} \] is equal to:
A. \[\dfrac{1}{2}\log \tan \left( {\dfrac{x}{2} + \dfrac{\pi }{{12}}} \right) + c\]
B. \[\dfrac{1}{2}\log \tan \left( {\dfrac{x}{2} - \dfrac{\pi }{{12}}} \right) + c\]
C. \[\log \tan \left( {\dfrac{x}{2} + \dfrac{\pi }{{12}}} \right) + c\]
D. \[\log \tan \left( {\dfrac{x}{2} - \dfrac{\pi }{{12}}} \right) + c\]
Answer
232.8k+ views
Hint: We will use the concept of indefinite integrals to solve the question which states that an integral is said to be indefinite if it has no upper or lower bounds. The most generic anti-derivative of f(x) is known as an indefinite integral and in mathematics, as F(x), which is any anti-derivative of f(x) and is denoted by \[\smallint f\left( x \right){\rm{ }}dx{\rm{ }} = {\rm{ }}F\left( x \right){\rm{ }} + {\rm{ c}}\]. Then we will multiply and divide whole of the denominator by 2. Then we will substitute the value of \[\sin \dfrac{\pi }{6}\cos x + \cos \dfrac{\pi }{6}\sin x\] by the formula of \[\sin{\rm{ }}A{\rm{ }}\cos{\rm{ }}B{\rm{ }} + {\rm{ }}\cos{\rm{ }}a{\rm{ }}\sin{\rm{ }}B{\rm{ }} = {\rm{ }}\sin\left( {A{\rm{ }} + {\rm{ }}B} \right)\]. Then we will apply the property of \[\dfrac{1}{{\sin{\rm{ }}A}} = {\rm{ }}cosec{\rm{ }}A\] in the above function.
Formula used:
The following outcomes show how differentiation and integration are mutually exclusive processes:
The following formula is used:
\[\sin (A+B) = \sin A \cos B+\cos A \sin B\]
\[\int \csc x dx = \ln \left |\tan \dfrac{x}{2} \right|+c\]
Complete step by step solution:
We have been given the function \[\int {\dfrac{{dx}}{{\cos x + \sqrt 3 \sin x}}} \].
We will multiply whole of the denominator by 2 and divide each of the function of the denominator by 2 individually.
Therefore,
\[\begin{array}{c}\int {\dfrac{{dx}}{{\cos x + \sqrt 3 \sin x}}} = \int {\dfrac{{dx}}{{2\left( {\dfrac{1}{2}\cos x + \dfrac{{\sqrt 3 }}{2}\sin x} \right)}}} \ = \dfrac{1}{2}\int {\dfrac{{dx}}{{\left( {\sin \dfrac{\pi }{6}\cos x + \cos \dfrac{\pi }{6}\sin x} \right)}}} \end{array}\]
We will substitute the value of \[\sin \dfrac{\pi }{6}\cos x + \cos \dfrac{\pi }{6}\sin x\] by the formula of \[\sin{\rm{ }}A{\rm{ }}\cos{\rm{ }}B{\rm{ }} + {\rm{ }}\cos{\rm{ }}A{\rm{ }}\sin{\rm{ }}B{\rm{ }} = {\rm{ }}\sin\left( {A{\rm{ }} + {\rm{ }}B} \right)\]
\[ = \dfrac{1}{2}\int {\dfrac{{dx}}{{\sin \left( {\dfrac{\pi }{6} + x} \right)}}} \]
Now we will apply the property of \[\dfrac{1}{{\sin{\rm{ }}A}} = {\rm{ }}\csc{\rm{ }}A\] in the above function,
\[ = \dfrac{1}{2}\int {{\mathop{\rm \csc}\nolimits} } \left( {\dfrac{\pi }{6} + x} \right)dx\]
Now we will apply the formula of indefinite integral to solve the question,
\[ = \dfrac{1}{2}\ln \left|\tan\left(\dfrac{\pi}{12}+\dfrac{x}{2}\right)\right| + c\]
Hence, option C is correct.
Note:Students often confused the formulas of \[\int \csc x dx=\ln \left|\tan{\dfrac{x}{2}}\right|+c\] and \[\int \csc x dx=\ln \left|\tan\left(\dfrac{x}{2}+\dfrac{\pi}{4}\right)\right|+c\]. The correct formulas are \[\int \csc x dx=\ln \left|\tan{\dfrac{x}{2}}\right|+c\] and \[\int \sec x dx=\ln \left|\tan\left(\dfrac{x}{2}+\dfrac{\pi}{4}\right)\right|+c\].
Formula used:
The following outcomes show how differentiation and integration are mutually exclusive processes:
The following formula is used:
\[\sin (A+B) = \sin A \cos B+\cos A \sin B\]
\[\int \csc x dx = \ln \left |\tan \dfrac{x}{2} \right|+c\]
Complete step by step solution:
We have been given the function \[\int {\dfrac{{dx}}{{\cos x + \sqrt 3 \sin x}}} \].
We will multiply whole of the denominator by 2 and divide each of the function of the denominator by 2 individually.
Therefore,
\[\begin{array}{c}\int {\dfrac{{dx}}{{\cos x + \sqrt 3 \sin x}}} = \int {\dfrac{{dx}}{{2\left( {\dfrac{1}{2}\cos x + \dfrac{{\sqrt 3 }}{2}\sin x} \right)}}} \ = \dfrac{1}{2}\int {\dfrac{{dx}}{{\left( {\sin \dfrac{\pi }{6}\cos x + \cos \dfrac{\pi }{6}\sin x} \right)}}} \end{array}\]
We will substitute the value of \[\sin \dfrac{\pi }{6}\cos x + \cos \dfrac{\pi }{6}\sin x\] by the formula of \[\sin{\rm{ }}A{\rm{ }}\cos{\rm{ }}B{\rm{ }} + {\rm{ }}\cos{\rm{ }}A{\rm{ }}\sin{\rm{ }}B{\rm{ }} = {\rm{ }}\sin\left( {A{\rm{ }} + {\rm{ }}B} \right)\]
\[ = \dfrac{1}{2}\int {\dfrac{{dx}}{{\sin \left( {\dfrac{\pi }{6} + x} \right)}}} \]
Now we will apply the property of \[\dfrac{1}{{\sin{\rm{ }}A}} = {\rm{ }}\csc{\rm{ }}A\] in the above function,
\[ = \dfrac{1}{2}\int {{\mathop{\rm \csc}\nolimits} } \left( {\dfrac{\pi }{6} + x} \right)dx\]
Now we will apply the formula of indefinite integral to solve the question,
\[ = \dfrac{1}{2}\ln \left|\tan\left(\dfrac{\pi}{12}+\dfrac{x}{2}\right)\right| + c\]
Hence, option C is correct.
Note:Students often confused the formulas of \[\int \csc x dx=\ln \left|\tan{\dfrac{x}{2}}\right|+c\] and \[\int \csc x dx=\ln \left|\tan\left(\dfrac{x}{2}+\dfrac{\pi}{4}\right)\right|+c\]. The correct formulas are \[\int \csc x dx=\ln \left|\tan{\dfrac{x}{2}}\right|+c\] and \[\int \sec x dx=\ln \left|\tan\left(\dfrac{x}{2}+\dfrac{\pi}{4}\right)\right|+c\].
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

Understanding Atomic Structure for Beginners

Inductive Effect and Its Role in Acidic Strength

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Chemistry Question Papers for JEE Main, NEET & Boards (PDFs)

