
Integral of \[\int {\dfrac{{dx}}{{\cos x + \sqrt 3 \sin x}}} \] is equal to:
A. \[\dfrac{1}{2}\log \tan \left( {\dfrac{x}{2} + \dfrac{\pi }{{12}}} \right) + c\]
B. \[\dfrac{1}{2}\log \tan \left( {\dfrac{x}{2} - \dfrac{\pi }{{12}}} \right) + c\]
C. \[\log \tan \left( {\dfrac{x}{2} + \dfrac{\pi }{{12}}} \right) + c\]
D. \[\log \tan \left( {\dfrac{x}{2} - \dfrac{\pi }{{12}}} \right) + c\]
Answer
217.5k+ views
Hint: We will use the concept of indefinite integrals to solve the question which states that an integral is said to be indefinite if it has no upper or lower bounds. The most generic anti-derivative of f(x) is known as an indefinite integral and in mathematics, as F(x), which is any anti-derivative of f(x) and is denoted by \[\smallint f\left( x \right){\rm{ }}dx{\rm{ }} = {\rm{ }}F\left( x \right){\rm{ }} + {\rm{ c}}\]. Then we will multiply and divide whole of the denominator by 2. Then we will substitute the value of \[\sin \dfrac{\pi }{6}\cos x + \cos \dfrac{\pi }{6}\sin x\] by the formula of \[\sin{\rm{ }}A{\rm{ }}\cos{\rm{ }}B{\rm{ }} + {\rm{ }}\cos{\rm{ }}a{\rm{ }}\sin{\rm{ }}B{\rm{ }} = {\rm{ }}\sin\left( {A{\rm{ }} + {\rm{ }}B} \right)\]. Then we will apply the property of \[\dfrac{1}{{\sin{\rm{ }}A}} = {\rm{ }}cosec{\rm{ }}A\] in the above function.
Formula used:
The following outcomes show how differentiation and integration are mutually exclusive processes:
The following formula is used:
\[\sin (A+B) = \sin A \cos B+\cos A \sin B\]
\[\int \csc x dx = \ln \left |\tan \dfrac{x}{2} \right|+c\]
Complete step by step solution:
We have been given the function \[\int {\dfrac{{dx}}{{\cos x + \sqrt 3 \sin x}}} \].
We will multiply whole of the denominator by 2 and divide each of the function of the denominator by 2 individually.
Therefore,
\[\begin{array}{c}\int {\dfrac{{dx}}{{\cos x + \sqrt 3 \sin x}}} = \int {\dfrac{{dx}}{{2\left( {\dfrac{1}{2}\cos x + \dfrac{{\sqrt 3 }}{2}\sin x} \right)}}} \ = \dfrac{1}{2}\int {\dfrac{{dx}}{{\left( {\sin \dfrac{\pi }{6}\cos x + \cos \dfrac{\pi }{6}\sin x} \right)}}} \end{array}\]
We will substitute the value of \[\sin \dfrac{\pi }{6}\cos x + \cos \dfrac{\pi }{6}\sin x\] by the formula of \[\sin{\rm{ }}A{\rm{ }}\cos{\rm{ }}B{\rm{ }} + {\rm{ }}\cos{\rm{ }}A{\rm{ }}\sin{\rm{ }}B{\rm{ }} = {\rm{ }}\sin\left( {A{\rm{ }} + {\rm{ }}B} \right)\]
\[ = \dfrac{1}{2}\int {\dfrac{{dx}}{{\sin \left( {\dfrac{\pi }{6} + x} \right)}}} \]
Now we will apply the property of \[\dfrac{1}{{\sin{\rm{ }}A}} = {\rm{ }}\csc{\rm{ }}A\] in the above function,
\[ = \dfrac{1}{2}\int {{\mathop{\rm \csc}\nolimits} } \left( {\dfrac{\pi }{6} + x} \right)dx\]
Now we will apply the formula of indefinite integral to solve the question,
\[ = \dfrac{1}{2}\ln \left|\tan\left(\dfrac{\pi}{12}+\dfrac{x}{2}\right)\right| + c\]
Hence, option C is correct.
Note:Students often confused the formulas of \[\int \csc x dx=\ln \left|\tan{\dfrac{x}{2}}\right|+c\] and \[\int \csc x dx=\ln \left|\tan\left(\dfrac{x}{2}+\dfrac{\pi}{4}\right)\right|+c\]. The correct formulas are \[\int \csc x dx=\ln \left|\tan{\dfrac{x}{2}}\right|+c\] and \[\int \sec x dx=\ln \left|\tan\left(\dfrac{x}{2}+\dfrac{\pi}{4}\right)\right|+c\].
Formula used:
The following outcomes show how differentiation and integration are mutually exclusive processes:
The following formula is used:
\[\sin (A+B) = \sin A \cos B+\cos A \sin B\]
\[\int \csc x dx = \ln \left |\tan \dfrac{x}{2} \right|+c\]
Complete step by step solution:
We have been given the function \[\int {\dfrac{{dx}}{{\cos x + \sqrt 3 \sin x}}} \].
We will multiply whole of the denominator by 2 and divide each of the function of the denominator by 2 individually.
Therefore,
\[\begin{array}{c}\int {\dfrac{{dx}}{{\cos x + \sqrt 3 \sin x}}} = \int {\dfrac{{dx}}{{2\left( {\dfrac{1}{2}\cos x + \dfrac{{\sqrt 3 }}{2}\sin x} \right)}}} \ = \dfrac{1}{2}\int {\dfrac{{dx}}{{\left( {\sin \dfrac{\pi }{6}\cos x + \cos \dfrac{\pi }{6}\sin x} \right)}}} \end{array}\]
We will substitute the value of \[\sin \dfrac{\pi }{6}\cos x + \cos \dfrac{\pi }{6}\sin x\] by the formula of \[\sin{\rm{ }}A{\rm{ }}\cos{\rm{ }}B{\rm{ }} + {\rm{ }}\cos{\rm{ }}A{\rm{ }}\sin{\rm{ }}B{\rm{ }} = {\rm{ }}\sin\left( {A{\rm{ }} + {\rm{ }}B} \right)\]
\[ = \dfrac{1}{2}\int {\dfrac{{dx}}{{\sin \left( {\dfrac{\pi }{6} + x} \right)}}} \]
Now we will apply the property of \[\dfrac{1}{{\sin{\rm{ }}A}} = {\rm{ }}\csc{\rm{ }}A\] in the above function,
\[ = \dfrac{1}{2}\int {{\mathop{\rm \csc}\nolimits} } \left( {\dfrac{\pi }{6} + x} \right)dx\]
Now we will apply the formula of indefinite integral to solve the question,
\[ = \dfrac{1}{2}\ln \left|\tan\left(\dfrac{\pi}{12}+\dfrac{x}{2}\right)\right| + c\]
Hence, option C is correct.
Note:Students often confused the formulas of \[\int \csc x dx=\ln \left|\tan{\dfrac{x}{2}}\right|+c\] and \[\int \csc x dx=\ln \left|\tan\left(\dfrac{x}{2}+\dfrac{\pi}{4}\right)\right|+c\]. The correct formulas are \[\int \csc x dx=\ln \left|\tan{\dfrac{x}{2}}\right|+c\] and \[\int \sec x dx=\ln \left|\tan\left(\dfrac{x}{2}+\dfrac{\pi}{4}\right)\right|+c\].
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

