
In the Rutherford scattering experiment, the number of α-particles scattered at \[{60^ \circ }\] is \[5 \times {10^6}\] . The number of \[\alpha - \] particles scattered at \[{120^ \circ }\] will be
A. \[15 \times {10^6} \\ \]
B. $\dfrac{3}{5} \times {10^6} \\ $
C. $\dfrac{5}{9} \times {10^6}$
D. None of these
Answer
217.8k+ views
Hint:Rutherford discovered that a small proportion of particles had 180 degree deflections. Such deflections could only be explained by supposing that the positive charge and nearly all of the atom's mass were concentrated at the foil's atoms' centre. To find the number of \[\alpha - \] particles scattered at \[{120^ \circ }\] we will use the inverse proportionality between the number of particles and the scattering angle.
Formula Used:
Number of \[\alpha - \] particles,
$N \propto \dfrac{1}{{{{\sin }^4}\dfrac{\theta }{2}}}$
where $\theta $ is the scattering angle of \[\alpha - \] particles after repulsion from the nucleus of the atom.
Complete step by step solution:
Given: Number of \[\alpha - \] particles scattered at \[{60^ \circ }\] angle is, ${N_{{{60}^ \circ }}} = 5 \times {10^6}$
Let ${N_{{{120}^ \circ }}}$ be the number of \[\alpha - \] particles scattered at \[{120^ \circ }\] angle. Now, we know that,
$N \propto \dfrac{1}{{{{\sin }^4}\dfrac{\theta }{2}}}$
This implies that,
${N_{{{60}^ \circ }}} \propto \dfrac{1}{{{{\sin }^4}\dfrac{{60}}{2}}}$.........(1)
And,
\[{N_{{{120}^ \circ }}} \propto \dfrac{1}{{{{\sin }^4}\dfrac{{120}}{2}}}\]..........(2)
Dividing equations (1) and (2) we get,
\[\dfrac{{{N_{{{120}^ \circ }}}}}{{{N_{{{60}^ \circ }}}}} = \dfrac{{\dfrac{1}{{{{\sin }^4}\dfrac{{120}}{2}}}}}{{\dfrac{1}{{{{\sin }^4}\dfrac{{60}}{2}}}}} \\ \]
Simplifying this,
\[\dfrac{{{N_{{{120}^ \circ }}}}}{{{N_{{{60}^ \circ }}}}} = \dfrac{{{{\sin }^4}\dfrac{{60}}{2}}}{{{{\sin }^4}\dfrac{{120}}{2}}} \\ \]
Further simplifying,
\[\dfrac{{{N_{{{120}^ \circ }}}}}{{{N_{{{60}^ \circ }}}}} = \dfrac{{{{\sin }^4}{{30}^ \circ }}}{{{{\sin }^4}{{60}^ \circ }}} \\ \]
Substituting the known values, we get,
\[{N_{{{120}^ \circ }}} = \dfrac{{{{\left( {\dfrac{1}{2}} \right)}^4}}}{{{{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}^4}}}5 \times {10^6} \\ \]
Thus,
\[\therefore {N_{{{120}^ \circ }}} = \dfrac{5}{9} \times {10^6}\]
Hence, option C is the answer.
Note: While solving this question remember that $\theta $ is not the angle with which the \[\alpha - \] particles are bombarded. Rather it is the angle with which the \[\alpha - \] particles are scattered after repulsion from the nucleus. Hence, not all particles are scattered with the same angle. The particles nearest to the nucleus will bounce back whereas other particles get deflected by different angles according to their distance from the nucleus.
Formula Used:
Number of \[\alpha - \] particles,
$N \propto \dfrac{1}{{{{\sin }^4}\dfrac{\theta }{2}}}$
where $\theta $ is the scattering angle of \[\alpha - \] particles after repulsion from the nucleus of the atom.
Complete step by step solution:
Given: Number of \[\alpha - \] particles scattered at \[{60^ \circ }\] angle is, ${N_{{{60}^ \circ }}} = 5 \times {10^6}$
Let ${N_{{{120}^ \circ }}}$ be the number of \[\alpha - \] particles scattered at \[{120^ \circ }\] angle. Now, we know that,
$N \propto \dfrac{1}{{{{\sin }^4}\dfrac{\theta }{2}}}$
This implies that,
${N_{{{60}^ \circ }}} \propto \dfrac{1}{{{{\sin }^4}\dfrac{{60}}{2}}}$.........(1)
And,
\[{N_{{{120}^ \circ }}} \propto \dfrac{1}{{{{\sin }^4}\dfrac{{120}}{2}}}\]..........(2)
Dividing equations (1) and (2) we get,
\[\dfrac{{{N_{{{120}^ \circ }}}}}{{{N_{{{60}^ \circ }}}}} = \dfrac{{\dfrac{1}{{{{\sin }^4}\dfrac{{120}}{2}}}}}{{\dfrac{1}{{{{\sin }^4}\dfrac{{60}}{2}}}}} \\ \]
Simplifying this,
\[\dfrac{{{N_{{{120}^ \circ }}}}}{{{N_{{{60}^ \circ }}}}} = \dfrac{{{{\sin }^4}\dfrac{{60}}{2}}}{{{{\sin }^4}\dfrac{{120}}{2}}} \\ \]
Further simplifying,
\[\dfrac{{{N_{{{120}^ \circ }}}}}{{{N_{{{60}^ \circ }}}}} = \dfrac{{{{\sin }^4}{{30}^ \circ }}}{{{{\sin }^4}{{60}^ \circ }}} \\ \]
Substituting the known values, we get,
\[{N_{{{120}^ \circ }}} = \dfrac{{{{\left( {\dfrac{1}{2}} \right)}^4}}}{{{{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}^4}}}5 \times {10^6} \\ \]
Thus,
\[\therefore {N_{{{120}^ \circ }}} = \dfrac{5}{9} \times {10^6}\]
Hence, option C is the answer.
Note: While solving this question remember that $\theta $ is not the angle with which the \[\alpha - \] particles are bombarded. Rather it is the angle with which the \[\alpha - \] particles are scattered after repulsion from the nucleus. Hence, not all particles are scattered with the same angle. The particles nearest to the nucleus will bounce back whereas other particles get deflected by different angles according to their distance from the nucleus.
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

