
In the figure shown the wave speed is ‘\[v\]’. The velocity of the car is ‘\[{v_0}\]’. The beat frequency for the observer will be:
A. \[\dfrac{{2{f_0}v{v_0}}}{{{v^2} + v_0^2}} \\ \]
B. \[\dfrac{{2{f_0}{v^2}}}{{{v^2} - v_0^2}} \\ \]
C. \[\dfrac{{2{f_0}v{v_0}}}{{{v^2} - v_0^2}} \\ \]
D. \[\dfrac{{{f_0}v{v_0}}}{{{v^2} - v_0^2}}\]
Answer
219k+ views
Hint: If the frequency when the car is approaching is \[{f_1}\] and when the car is leaving is \[{f_2}\]. Get the value of \[{f_1}\] and \[{f_2}\] in terms of \[{f_0}\] . The Doppler effect or Doppler shift can be describing the changes in frequency of sound or light wave produced by a moving source with respect to an observer. Also, we know that the beat frequency is defined as the difference in frequency of two waves. By using this we can get the result.
Formula used:
Frequency when source is approaching is given as,
\[{f_1} = {f_0}\left( {\dfrac{v}{{v - {v_0}}}} \right)\]
Frequency when source is leaving is given as,
\[{f_2} = {f_0}\left( {\dfrac{v}{{v + {v_0}}}} \right)\]
Where \[{f_1}\] and \[{f_2}\] is the frequency required, \[{f_0}\] is the given frequency, \[v\] is the velocity of the observer and \[{v_0}\] is the velocity of sound.
Beat frequency is given as,
\[{f_1} - {f_2}\]
Where \[{f_1} - {f_2}\] represents the change in frequency.
Complete step by step solution:
As we know that the frequency when source is approaching is given as,
\[{f_1} = {f_0}\left( {\dfrac{v}{{v - {v_0}}}} \right) \\ \]
Frequency when source is leaving is given as,
\[{f_2} = {f_0}\left( {\dfrac{v}{{v + {v_0}}}} \right) \\ \]
Now the beat frequency = \[{f_1} - {f_2} \\ \]
\[\text{beat frequency} = {f_0}v\left( {\dfrac{1}{{v - {v_0}}} - \dfrac{1}{{v + {v_0}}}} \right) \\ \]
\[\Rightarrow \text{beat frequency} = {f_0}v\left( {\dfrac{{v + {v_0} - v + {v_0}}}{{{v^2} - v_0^2}}} \right) \\ \]
\[\therefore \text{beat frequency} = \dfrac{{2{f_0}v{v_0}}}{{{v^2} - v_0^2}}\]
Hence option C is the correct answer.
Note:The formula for Doppler Effect is related to the frequency of the sound of an object with its velocity. Doppler Effect is defined as the change in wave frequency during the relative motion between the wave source and its observer. It was given by Christian Johann Doppler. Beats can be determined by subtracting the initial frequency with the frequency observed by the observer.
Formula used:
Frequency when source is approaching is given as,
\[{f_1} = {f_0}\left( {\dfrac{v}{{v - {v_0}}}} \right)\]
Frequency when source is leaving is given as,
\[{f_2} = {f_0}\left( {\dfrac{v}{{v + {v_0}}}} \right)\]
Where \[{f_1}\] and \[{f_2}\] is the frequency required, \[{f_0}\] is the given frequency, \[v\] is the velocity of the observer and \[{v_0}\] is the velocity of sound.
Beat frequency is given as,
\[{f_1} - {f_2}\]
Where \[{f_1} - {f_2}\] represents the change in frequency.
Complete step by step solution:
As we know that the frequency when source is approaching is given as,
\[{f_1} = {f_0}\left( {\dfrac{v}{{v - {v_0}}}} \right) \\ \]
Frequency when source is leaving is given as,
\[{f_2} = {f_0}\left( {\dfrac{v}{{v + {v_0}}}} \right) \\ \]
Now the beat frequency = \[{f_1} - {f_2} \\ \]
\[\text{beat frequency} = {f_0}v\left( {\dfrac{1}{{v - {v_0}}} - \dfrac{1}{{v + {v_0}}}} \right) \\ \]
\[\Rightarrow \text{beat frequency} = {f_0}v\left( {\dfrac{{v + {v_0} - v + {v_0}}}{{{v^2} - v_0^2}}} \right) \\ \]
\[\therefore \text{beat frequency} = \dfrac{{2{f_0}v{v_0}}}{{{v^2} - v_0^2}}\]
Hence option C is the correct answer.
Note:The formula for Doppler Effect is related to the frequency of the sound of an object with its velocity. Doppler Effect is defined as the change in wave frequency during the relative motion between the wave source and its observer. It was given by Christian Johann Doppler. Beats can be determined by subtracting the initial frequency with the frequency observed by the observer.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Understanding Atomic Structure for Beginners

