
In the figure shown if the friction coefficient of the block $1$ and $2$ with the inclined plane is ${\mu _1} = 0.5$and ${\mu _2} = 0.4$ respectively, then find out the correct statement.
$\left( a \right)$ Both blocks will move together
$\left( b \right)$ Both blocks will move separately
$\left( c \right)$ There is a non-zero contact force between two blocks
$\left( d \right)$ None of these

Answer
146.1k+ views
Hint So to solve this type of problem it is necessary to draw the free fall diagram and in this question, we will consider both the blocks are independent and then we will find the acceleration for both the blocks by using the formula$a = g\sin \theta - \mu g\cos \theta $.
Formula used
Acceleration for the block will be
$a = g\sin \theta - \mu g\cos \theta $
Here,
$a$, will be the acceleration of the block
$g$, will be the acceleration due to gravity
Complete Step by Step Solution
Let's consider the two blocks $1$ and$2$, both are independent. Since the blocks are independent so their acceleration will also be independent for both of the blocks.
Acceleration for block$1$:

As we know the formula,
${a_1} = g\sin \theta - {\mu _1}g\cos \theta $
Now substitute the values, we get
$ \Rightarrow g\left[ {\dfrac{{\sqrt 3 }}{2} - \dfrac{1}{2} \times \dfrac{1}{2}} \right]$
On solving the above equation, we get
$ \Rightarrow g\left[ {\dfrac{{2\sqrt 3 - 1}}{4}} \right]$
Therefore, $g\left[ {\dfrac{{2\sqrt 3 - 1}}{4}} \right]$ will be the acceleration for the first block.
Similarly,
Acceleration for block$2$:

As we know the formula,
${a_2} = g\sin \theta - {\mu _2}g\cos \theta $
Now substitute the values, we get
$ \Rightarrow g\left[ {\dfrac{{\sqrt 3 }}{2} - \dfrac{2}{5} \times \dfrac{1}{2}} \right]$
On solving the above equation, we get
$ \Rightarrow g\left[ {5\sqrt 3 - 2} \right]$
Therefore, $g\left[ {5\sqrt 3 - 2} \right]$ will be the acceleration for the second block.
So, we see that the acceleration ${a_2}$is greater than the acceleration of ${a_1}$
Therefore, we can say that both the blocks will move separately.
Hence the option $B$will be correct.
Note Acceleration is positive in the “down” direction, where “down” is where the nearest big source of gravity is.
In physics, acceleration is usually expressed as a vector, i.e. a direction and a magnitude. A magnitude is an absolute value, hence always positive.
We could say the object is accelerating negatively in the “up” direction but that’s a muddled way of looking at things. Direction-and-magnitude makes more sense.
Formula used
Acceleration for the block will be
$a = g\sin \theta - \mu g\cos \theta $
Here,
$a$, will be the acceleration of the block
$g$, will be the acceleration due to gravity
Complete Step by Step Solution
Let's consider the two blocks $1$ and$2$, both are independent. Since the blocks are independent so their acceleration will also be independent for both of the blocks.
Acceleration for block$1$:

As we know the formula,
${a_1} = g\sin \theta - {\mu _1}g\cos \theta $
Now substitute the values, we get
$ \Rightarrow g\left[ {\dfrac{{\sqrt 3 }}{2} - \dfrac{1}{2} \times \dfrac{1}{2}} \right]$
On solving the above equation, we get
$ \Rightarrow g\left[ {\dfrac{{2\sqrt 3 - 1}}{4}} \right]$
Therefore, $g\left[ {\dfrac{{2\sqrt 3 - 1}}{4}} \right]$ will be the acceleration for the first block.
Similarly,
Acceleration for block$2$:

As we know the formula,
${a_2} = g\sin \theta - {\mu _2}g\cos \theta $
Now substitute the values, we get
$ \Rightarrow g\left[ {\dfrac{{\sqrt 3 }}{2} - \dfrac{2}{5} \times \dfrac{1}{2}} \right]$
On solving the above equation, we get
$ \Rightarrow g\left[ {5\sqrt 3 - 2} \right]$
Therefore, $g\left[ {5\sqrt 3 - 2} \right]$ will be the acceleration for the second block.
So, we see that the acceleration ${a_2}$is greater than the acceleration of ${a_1}$
Therefore, we can say that both the blocks will move separately.
Hence the option $B$will be correct.
Note Acceleration is positive in the “down” direction, where “down” is where the nearest big source of gravity is.
In physics, acceleration is usually expressed as a vector, i.e. a direction and a magnitude. A magnitude is an absolute value, hence always positive.
We could say the object is accelerating negatively in the “up” direction but that’s a muddled way of looking at things. Direction-and-magnitude makes more sense.
Recently Updated Pages
Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Charle's Law Formula - Definition, Derivation and Solved Examples

Central Angle of a Circle Formula - Definition, Theorem and FAQs

Average Force Formula - Magnitude, Solved Examples and FAQs

Boyles Law Formula - Boyles Law Equation | Examples & Definitions

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
