
In $F = Av + Bt + \dfrac{{Cx}}{{D + At}}$ , where F = force, v = speed, t = time, x = position, the dimensions of C will be:-
(A) $\left[ {{M^2}{L^{ - 2}}{T^0}} \right]$
(B) $\left[ {{M^1}{L^{ - 1}}{T^0}} \right]$
(C) $\left[ {{M^2}{L^0}{T^{ - 2}}} \right]$
(D) $\left[ {{M^1}{L^0}{T^{ - 2}}} \right]$
Answer
147.6k+ views
Hint: - For the correctness of an equation the dimension on either side of the equation must be the same. This is well-known as the principle of homogeneity of dimensions. In equations having more than two terms, the dimension of each term needs to be the same.
The dimension of force is $\left[ {{M^1}{L^1}{T^{ - 2}}} \right]$ .
Complete Step-by-step solution:
We can check the relation between various physical quantities by finding the dimension of physical quantities. By dimensional analysis, we can check the rightness of an equation, we can derive the correct relationship between different physical quantities and it can also be used to convert one system of the unit into another.
For the rightness of an equation, the dimension on either side of the equation must be the same. In equations having more than two terms, the dimension of each term must be the same.
In the given equation $Av$ , $Bt$ and $\dfrac{{Cx}}{{D + At}}$ must have a force dimension.
Force is mass times acceleration. We know that the unit of force is $kg - m{s^{ - 2}}$ .
By evaluating the unit, we can write the dimension of force as $\left[ {ML{T^{ - 2}}} \right]$ .
And, velocity is the rate of change of displacement. We know that unit of velocity is $m{s^{ - 1}}$
By evaluating the unit, we can write the dimension of velocity as $\left[ {L{T^{ - 1}}} \right]$ .
Using the principle of homogeneity of dimensions, we can write;
$ \Rightarrow F = Av$ ........... $\left( 1 \right)$
On substituting all the dimensions in the equation $\left( 1 \right)$, we get ;
$ \Rightarrow \left[ {ML{T^{ - 2}}} \right] = A\left[ {L{T^{ - 1}}} \right]$
$ \Rightarrow A = \dfrac{{\left[ {ML{T^{ - 2}}} \right]}}{{\left[ {L{T^{ - 1}}} \right]}}$
On further simplifying the above equation, we get;
$ \Rightarrow A = \left[ {M{T^{ - 1}}} \right]$
In the given term $\dfrac{{Cx}}{{D + At}}$ , $D$ and $At$ must have the same dimension. Therefore,
$ \Rightarrow D = At$ ........... $\left( 2 \right)$
Where $t$ stands for time and its SI unit is second.
On evaluating the unit, we can write the dimension of time as $\left[ T \right]$ .
Substitute all the dimensions in the equation $\left( 2 \right)$, we get;
$ \Rightarrow D = \left[ {M{T^{ - 1}}} \right] \times \left[ T \right]$
$ \Rightarrow D = \left[ M \right]$
Using the principle of homogeneity of dimensions, we can also write;
$ \Rightarrow F = \dfrac{{Cx}}{{D + At}}$ ........... $\left( 3 \right)$
Where $x$ stands for length and its SI unit is meter.
On evaluating the unit, we can write the dimension of length as $\left[ L \right]$.
Substitute all the dimensions in the equation $\left( 3 \right)$ , we get;
$ \Rightarrow \left[ {ML{T^{ - 2}}} \right] = \dfrac{{C \times \left[ L \right]}}{{\left[ M \right]}}$
$ \Rightarrow C = \dfrac{{\left[ {ML{T^{ - 2}}} \right] \times \left[ M \right]}}{{\left[ L \right]}}$
$ \Rightarrow C = \dfrac{{\left[ {{M^2}L{T^{ - 2}}} \right]}}{{\left[ L \right]}}$
$ \Rightarrow C = \left[ {{M^2}{L^0}{T^{ - 2}}} \right]$
$\therefore $ The dimension of $C$ is $\left[ {{M^2}{L^0}{T^{ - 2}}} \right]$ .
The correct answer is (C) $\left[ {{M^2}{L^0}{T^{ - 2}}} \right]$ .
Note: Firstly, Mass, length, and time are most commonly encountered fundamental quantities so they must be specified in all dimensional formulas. The square bracket symbolization is used only for dimensional formulas. Secondly, to simplify dimensional formulas we can apply multiplication and division properties of the exponent.
The dimension of force is $\left[ {{M^1}{L^1}{T^{ - 2}}} \right]$ .
Complete Step-by-step solution:
We can check the relation between various physical quantities by finding the dimension of physical quantities. By dimensional analysis, we can check the rightness of an equation, we can derive the correct relationship between different physical quantities and it can also be used to convert one system of the unit into another.
For the rightness of an equation, the dimension on either side of the equation must be the same. In equations having more than two terms, the dimension of each term must be the same.
In the given equation $Av$ , $Bt$ and $\dfrac{{Cx}}{{D + At}}$ must have a force dimension.
Force is mass times acceleration. We know that the unit of force is $kg - m{s^{ - 2}}$ .
By evaluating the unit, we can write the dimension of force as $\left[ {ML{T^{ - 2}}} \right]$ .
And, velocity is the rate of change of displacement. We know that unit of velocity is $m{s^{ - 1}}$
By evaluating the unit, we can write the dimension of velocity as $\left[ {L{T^{ - 1}}} \right]$ .
Using the principle of homogeneity of dimensions, we can write;
$ \Rightarrow F = Av$ ........... $\left( 1 \right)$
On substituting all the dimensions in the equation $\left( 1 \right)$, we get ;
$ \Rightarrow \left[ {ML{T^{ - 2}}} \right] = A\left[ {L{T^{ - 1}}} \right]$
$ \Rightarrow A = \dfrac{{\left[ {ML{T^{ - 2}}} \right]}}{{\left[ {L{T^{ - 1}}} \right]}}$
On further simplifying the above equation, we get;
$ \Rightarrow A = \left[ {M{T^{ - 1}}} \right]$
In the given term $\dfrac{{Cx}}{{D + At}}$ , $D$ and $At$ must have the same dimension. Therefore,
$ \Rightarrow D = At$ ........... $\left( 2 \right)$
Where $t$ stands for time and its SI unit is second.
On evaluating the unit, we can write the dimension of time as $\left[ T \right]$ .
Substitute all the dimensions in the equation $\left( 2 \right)$, we get;
$ \Rightarrow D = \left[ {M{T^{ - 1}}} \right] \times \left[ T \right]$
$ \Rightarrow D = \left[ M \right]$
Using the principle of homogeneity of dimensions, we can also write;
$ \Rightarrow F = \dfrac{{Cx}}{{D + At}}$ ........... $\left( 3 \right)$
Where $x$ stands for length and its SI unit is meter.
On evaluating the unit, we can write the dimension of length as $\left[ L \right]$.
Substitute all the dimensions in the equation $\left( 3 \right)$ , we get;
$ \Rightarrow \left[ {ML{T^{ - 2}}} \right] = \dfrac{{C \times \left[ L \right]}}{{\left[ M \right]}}$
$ \Rightarrow C = \dfrac{{\left[ {ML{T^{ - 2}}} \right] \times \left[ M \right]}}{{\left[ L \right]}}$
$ \Rightarrow C = \dfrac{{\left[ {{M^2}L{T^{ - 2}}} \right]}}{{\left[ L \right]}}$
$ \Rightarrow C = \left[ {{M^2}{L^0}{T^{ - 2}}} \right]$
$\therefore $ The dimension of $C$ is $\left[ {{M^2}{L^0}{T^{ - 2}}} \right]$ .
The correct answer is (C) $\left[ {{M^2}{L^0}{T^{ - 2}}} \right]$ .
Note: Firstly, Mass, length, and time are most commonly encountered fundamental quantities so they must be specified in all dimensional formulas. The square bracket symbolization is used only for dimensional formulas. Secondly, to simplify dimensional formulas we can apply multiplication and division properties of the exponent.
Recently Updated Pages
JEE Main 2023 (January 29th Shift 1) Physics Question Paper with Answer Key

JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2022 (June 24th Shift 1) Physics Question Paper with Answer Key

Equivalent Capacitance - Important Concepts and Tips for JEE

JEE Main 2023 (April 6th Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
