
In \[\Delta ABC\], if \[\cos A + \cos C = 4{\sin ^2}\dfrac{1}{2}B\], then a,b,c are in
A. A.P.
B. G.P.
C. H.P.
D. None of these
Answer
161.7k+ views
Hint: First we will apply the formula of the sum of two cos functions on the left side of the given equation. Again, using the trigonometric identities, we will simplify the given equation. In the end, we will substitute half of the angle of the triangle formula and simplify.
Formula used:
Trigonometry identities
\[\cos a + \cos b = 2\cos \dfrac{{a + b}}{2}\cos \dfrac{{a - b}}{2}\]
\[\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b\]
Half angle formula for triangle
\[\cos \dfrac{A}{2} = \sqrt {\dfrac{{s\left( {s - a} \right)}}{{bc}}} \]
\[\cos \dfrac{B}{2} = \sqrt {\dfrac{{s\left( {s - b} \right)}}{{ca}}} \]
\[\cos \dfrac{C}{2} = \sqrt {\dfrac{{s\left( {s - c} \right)}}{{ab}}} \]
\[\sin \dfrac{A}{2} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} \]
\[\sin \dfrac{B}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \]
\[\sin \dfrac{C}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} \]
Complete step by step solution:
Given equation is
\[\cos A + \cos C = 4{\sin ^2}\dfrac{1}{2}B\]
Now we will apply the trigonometry formula \[\cos a + \cos b = 2\cos \dfrac{{a + b}}{2}\cos \dfrac{{a - b}}{2}\] on the left side
\[ \Rightarrow 2\cos \dfrac{{A + C}}{2}\cos \dfrac{{A - C}}{2} = 4{\sin ^2}\dfrac{1}{2}B\]
\[ \Rightarrow \cos \dfrac{{A + C}}{2}\cos \dfrac{{A - C}}{2} = 2{\sin ^2}\dfrac{1}{2}B\]
Since ABC is a triangle, thus \[A + B + C = \pi \] \[ \Rightarrow A + C = \pi - B\]
\[ \Rightarrow \cos \dfrac{{\pi - B}}{2}\cos \dfrac{{A - C}}{2} = 2{\sin ^2}\dfrac{1}{2}B\]
\[ \Rightarrow \cos \left( {\dfrac{\pi }{2} - \dfrac{B}{2}} \right)\cos \dfrac{{A - C}}{2} = 2{\sin ^2}\dfrac{1}{2}B\]
Now we applying complementary angle formula \[\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \]
\[ \Rightarrow \sin \dfrac{B}{2}\cos \dfrac{{A - C}}{2} = 2{\sin ^2}\dfrac{1}{2}B\]
Cancel out \[\sin \dfrac{B}{2}\] from both sides
\[ \Rightarrow \cos \dfrac{{A - C}}{2} = 2\sin \dfrac{1}{2}B\]
Now applying the formula \[\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b\]
\[ \Rightarrow \cos \dfrac{A}{2}\cos \dfrac{C}{2} + \sin \dfrac{A}{2}\sin \dfrac{C}{2} = 2\sin \dfrac{1}{2}B\]
Now using the half angle formula for triangle
\[ \Rightarrow \sqrt {\dfrac{{s\left( {s - a} \right)}}{{bc}}} \sqrt {\dfrac{{s\left( {s - c} \right)}}{{ab}}} + \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} = 2\sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \]
Now simplify the above equation
\[ \Rightarrow \dfrac{s}{b}\sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} + \dfrac{{s - b}}{b}\sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} = 2\sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \]
Cancel out \[\sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \] from both sides
\[ \Rightarrow \dfrac{s}{b} + \dfrac{{s - b}}{b} = 2\]
\[ \Rightarrow \dfrac{{2s - b}}{b} = 2\]
Substitute \[2s = a + b + c\]
\[ \Rightarrow \dfrac{{a + b + c - b}}{b} = 2\]
\[ \Rightarrow a + c = 2b\]
It is condition of AP. Thus a, b, c are in AP.
Hence option A is the correct option.
Note:Students often confused with sum of cosine formula and difference of cosine formula. They used a wrong formula that is \[\cos \left( {a - b} \right) = \cos a\cos b - \sin a\sin b\]. The correct formulas are \[\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b\] and \[\cos \left( {a + b} \right) = \cos a\cos b - \sin a\sin b\].
Formula used:
Trigonometry identities
\[\cos a + \cos b = 2\cos \dfrac{{a + b}}{2}\cos \dfrac{{a - b}}{2}\]
\[\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b\]
Half angle formula for triangle
\[\cos \dfrac{A}{2} = \sqrt {\dfrac{{s\left( {s - a} \right)}}{{bc}}} \]
\[\cos \dfrac{B}{2} = \sqrt {\dfrac{{s\left( {s - b} \right)}}{{ca}}} \]
\[\cos \dfrac{C}{2} = \sqrt {\dfrac{{s\left( {s - c} \right)}}{{ab}}} \]
\[\sin \dfrac{A}{2} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} \]
\[\sin \dfrac{B}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \]
\[\sin \dfrac{C}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} \]
Complete step by step solution:
Given equation is
\[\cos A + \cos C = 4{\sin ^2}\dfrac{1}{2}B\]
Now we will apply the trigonometry formula \[\cos a + \cos b = 2\cos \dfrac{{a + b}}{2}\cos \dfrac{{a - b}}{2}\] on the left side
\[ \Rightarrow 2\cos \dfrac{{A + C}}{2}\cos \dfrac{{A - C}}{2} = 4{\sin ^2}\dfrac{1}{2}B\]
\[ \Rightarrow \cos \dfrac{{A + C}}{2}\cos \dfrac{{A - C}}{2} = 2{\sin ^2}\dfrac{1}{2}B\]
Since ABC is a triangle, thus \[A + B + C = \pi \] \[ \Rightarrow A + C = \pi - B\]
\[ \Rightarrow \cos \dfrac{{\pi - B}}{2}\cos \dfrac{{A - C}}{2} = 2{\sin ^2}\dfrac{1}{2}B\]
\[ \Rightarrow \cos \left( {\dfrac{\pi }{2} - \dfrac{B}{2}} \right)\cos \dfrac{{A - C}}{2} = 2{\sin ^2}\dfrac{1}{2}B\]
Now we applying complementary angle formula \[\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \]
\[ \Rightarrow \sin \dfrac{B}{2}\cos \dfrac{{A - C}}{2} = 2{\sin ^2}\dfrac{1}{2}B\]
Cancel out \[\sin \dfrac{B}{2}\] from both sides
\[ \Rightarrow \cos \dfrac{{A - C}}{2} = 2\sin \dfrac{1}{2}B\]
Now applying the formula \[\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b\]
\[ \Rightarrow \cos \dfrac{A}{2}\cos \dfrac{C}{2} + \sin \dfrac{A}{2}\sin \dfrac{C}{2} = 2\sin \dfrac{1}{2}B\]
Now using the half angle formula for triangle
\[ \Rightarrow \sqrt {\dfrac{{s\left( {s - a} \right)}}{{bc}}} \sqrt {\dfrac{{s\left( {s - c} \right)}}{{ab}}} + \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} = 2\sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \]
Now simplify the above equation
\[ \Rightarrow \dfrac{s}{b}\sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} + \dfrac{{s - b}}{b}\sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} = 2\sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \]
Cancel out \[\sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \] from both sides
\[ \Rightarrow \dfrac{s}{b} + \dfrac{{s - b}}{b} = 2\]
\[ \Rightarrow \dfrac{{2s - b}}{b} = 2\]
Substitute \[2s = a + b + c\]
\[ \Rightarrow \dfrac{{a + b + c - b}}{b} = 2\]
\[ \Rightarrow a + c = 2b\]
It is condition of AP. Thus a, b, c are in AP.
Hence option A is the correct option.
Note:Students often confused with sum of cosine formula and difference of cosine formula. They used a wrong formula that is \[\cos \left( {a - b} \right) = \cos a\cos b - \sin a\sin b\]. The correct formulas are \[\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b\] and \[\cos \left( {a + b} \right) = \cos a\cos b - \sin a\sin b\].
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Cutoff Percentile for 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
