
In \[\Delta ABC\], if \[\cos A + \cos C = 4{\sin ^2}\dfrac{1}{2}B\], then a,b,c are in
A. A.P.
B. G.P.
C. H.P.
D. None of these
Answer
233.1k+ views
Hint: First we will apply the formula of the sum of two cos functions on the left side of the given equation. Again, using the trigonometric identities, we will simplify the given equation. In the end, we will substitute half of the angle of the triangle formula and simplify.
Formula used:
Trigonometry identities
\[\cos a + \cos b = 2\cos \dfrac{{a + b}}{2}\cos \dfrac{{a - b}}{2}\]
\[\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b\]
Half angle formula for triangle
\[\cos \dfrac{A}{2} = \sqrt {\dfrac{{s\left( {s - a} \right)}}{{bc}}} \]
\[\cos \dfrac{B}{2} = \sqrt {\dfrac{{s\left( {s - b} \right)}}{{ca}}} \]
\[\cos \dfrac{C}{2} = \sqrt {\dfrac{{s\left( {s - c} \right)}}{{ab}}} \]
\[\sin \dfrac{A}{2} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} \]
\[\sin \dfrac{B}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \]
\[\sin \dfrac{C}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} \]
Complete step by step solution:
Given equation is
\[\cos A + \cos C = 4{\sin ^2}\dfrac{1}{2}B\]
Now we will apply the trigonometry formula \[\cos a + \cos b = 2\cos \dfrac{{a + b}}{2}\cos \dfrac{{a - b}}{2}\] on the left side
\[ \Rightarrow 2\cos \dfrac{{A + C}}{2}\cos \dfrac{{A - C}}{2} = 4{\sin ^2}\dfrac{1}{2}B\]
\[ \Rightarrow \cos \dfrac{{A + C}}{2}\cos \dfrac{{A - C}}{2} = 2{\sin ^2}\dfrac{1}{2}B\]
Since ABC is a triangle, thus \[A + B + C = \pi \] \[ \Rightarrow A + C = \pi - B\]
\[ \Rightarrow \cos \dfrac{{\pi - B}}{2}\cos \dfrac{{A - C}}{2} = 2{\sin ^2}\dfrac{1}{2}B\]
\[ \Rightarrow \cos \left( {\dfrac{\pi }{2} - \dfrac{B}{2}} \right)\cos \dfrac{{A - C}}{2} = 2{\sin ^2}\dfrac{1}{2}B\]
Now we applying complementary angle formula \[\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \]
\[ \Rightarrow \sin \dfrac{B}{2}\cos \dfrac{{A - C}}{2} = 2{\sin ^2}\dfrac{1}{2}B\]
Cancel out \[\sin \dfrac{B}{2}\] from both sides
\[ \Rightarrow \cos \dfrac{{A - C}}{2} = 2\sin \dfrac{1}{2}B\]
Now applying the formula \[\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b\]
\[ \Rightarrow \cos \dfrac{A}{2}\cos \dfrac{C}{2} + \sin \dfrac{A}{2}\sin \dfrac{C}{2} = 2\sin \dfrac{1}{2}B\]
Now using the half angle formula for triangle
\[ \Rightarrow \sqrt {\dfrac{{s\left( {s - a} \right)}}{{bc}}} \sqrt {\dfrac{{s\left( {s - c} \right)}}{{ab}}} + \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} = 2\sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \]
Now simplify the above equation
\[ \Rightarrow \dfrac{s}{b}\sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} + \dfrac{{s - b}}{b}\sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} = 2\sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \]
Cancel out \[\sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \] from both sides
\[ \Rightarrow \dfrac{s}{b} + \dfrac{{s - b}}{b} = 2\]
\[ \Rightarrow \dfrac{{2s - b}}{b} = 2\]
Substitute \[2s = a + b + c\]
\[ \Rightarrow \dfrac{{a + b + c - b}}{b} = 2\]
\[ \Rightarrow a + c = 2b\]
It is condition of AP. Thus a, b, c are in AP.
Hence option A is the correct option.
Note:Students often confused with sum of cosine formula and difference of cosine formula. They used a wrong formula that is \[\cos \left( {a - b} \right) = \cos a\cos b - \sin a\sin b\]. The correct formulas are \[\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b\] and \[\cos \left( {a + b} \right) = \cos a\cos b - \sin a\sin b\].
Formula used:
Trigonometry identities
\[\cos a + \cos b = 2\cos \dfrac{{a + b}}{2}\cos \dfrac{{a - b}}{2}\]
\[\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b\]
Half angle formula for triangle
\[\cos \dfrac{A}{2} = \sqrt {\dfrac{{s\left( {s - a} \right)}}{{bc}}} \]
\[\cos \dfrac{B}{2} = \sqrt {\dfrac{{s\left( {s - b} \right)}}{{ca}}} \]
\[\cos \dfrac{C}{2} = \sqrt {\dfrac{{s\left( {s - c} \right)}}{{ab}}} \]
\[\sin \dfrac{A}{2} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} \]
\[\sin \dfrac{B}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \]
\[\sin \dfrac{C}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} \]
Complete step by step solution:
Given equation is
\[\cos A + \cos C = 4{\sin ^2}\dfrac{1}{2}B\]
Now we will apply the trigonometry formula \[\cos a + \cos b = 2\cos \dfrac{{a + b}}{2}\cos \dfrac{{a - b}}{2}\] on the left side
\[ \Rightarrow 2\cos \dfrac{{A + C}}{2}\cos \dfrac{{A - C}}{2} = 4{\sin ^2}\dfrac{1}{2}B\]
\[ \Rightarrow \cos \dfrac{{A + C}}{2}\cos \dfrac{{A - C}}{2} = 2{\sin ^2}\dfrac{1}{2}B\]
Since ABC is a triangle, thus \[A + B + C = \pi \] \[ \Rightarrow A + C = \pi - B\]
\[ \Rightarrow \cos \dfrac{{\pi - B}}{2}\cos \dfrac{{A - C}}{2} = 2{\sin ^2}\dfrac{1}{2}B\]
\[ \Rightarrow \cos \left( {\dfrac{\pi }{2} - \dfrac{B}{2}} \right)\cos \dfrac{{A - C}}{2} = 2{\sin ^2}\dfrac{1}{2}B\]
Now we applying complementary angle formula \[\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \]
\[ \Rightarrow \sin \dfrac{B}{2}\cos \dfrac{{A - C}}{2} = 2{\sin ^2}\dfrac{1}{2}B\]
Cancel out \[\sin \dfrac{B}{2}\] from both sides
\[ \Rightarrow \cos \dfrac{{A - C}}{2} = 2\sin \dfrac{1}{2}B\]
Now applying the formula \[\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b\]
\[ \Rightarrow \cos \dfrac{A}{2}\cos \dfrac{C}{2} + \sin \dfrac{A}{2}\sin \dfrac{C}{2} = 2\sin \dfrac{1}{2}B\]
Now using the half angle formula for triangle
\[ \Rightarrow \sqrt {\dfrac{{s\left( {s - a} \right)}}{{bc}}} \sqrt {\dfrac{{s\left( {s - c} \right)}}{{ab}}} + \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} = 2\sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \]
Now simplify the above equation
\[ \Rightarrow \dfrac{s}{b}\sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} + \dfrac{{s - b}}{b}\sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} = 2\sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \]
Cancel out \[\sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \] from both sides
\[ \Rightarrow \dfrac{s}{b} + \dfrac{{s - b}}{b} = 2\]
\[ \Rightarrow \dfrac{{2s - b}}{b} = 2\]
Substitute \[2s = a + b + c\]
\[ \Rightarrow \dfrac{{a + b + c - b}}{b} = 2\]
\[ \Rightarrow a + c = 2b\]
It is condition of AP. Thus a, b, c are in AP.
Hence option A is the correct option.
Note:Students often confused with sum of cosine formula and difference of cosine formula. They used a wrong formula that is \[\cos \left( {a - b} \right) = \cos a\cos b - \sin a\sin b\]. The correct formulas are \[\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b\] and \[\cos \left( {a + b} \right) = \cos a\cos b - \sin a\sin b\].
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

