
In \[\Delta ABC\], if \[\cos A + \cos C = 4{\sin ^2}\dfrac{1}{2}B\], then a,b,c are in
A. A.P.
B. G.P.
C. H.P.
D. None of these
Answer
164.4k+ views
Hint: First we will apply the formula of the sum of two cos functions on the left side of the given equation. Again, using the trigonometric identities, we will simplify the given equation. In the end, we will substitute half of the angle of the triangle formula and simplify.
Formula used:
Trigonometry identities
\[\cos a + \cos b = 2\cos \dfrac{{a + b}}{2}\cos \dfrac{{a - b}}{2}\]
\[\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b\]
Half angle formula for triangle
\[\cos \dfrac{A}{2} = \sqrt {\dfrac{{s\left( {s - a} \right)}}{{bc}}} \]
\[\cos \dfrac{B}{2} = \sqrt {\dfrac{{s\left( {s - b} \right)}}{{ca}}} \]
\[\cos \dfrac{C}{2} = \sqrt {\dfrac{{s\left( {s - c} \right)}}{{ab}}} \]
\[\sin \dfrac{A}{2} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} \]
\[\sin \dfrac{B}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \]
\[\sin \dfrac{C}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} \]
Complete step by step solution:
Given equation is
\[\cos A + \cos C = 4{\sin ^2}\dfrac{1}{2}B\]
Now we will apply the trigonometry formula \[\cos a + \cos b = 2\cos \dfrac{{a + b}}{2}\cos \dfrac{{a - b}}{2}\] on the left side
\[ \Rightarrow 2\cos \dfrac{{A + C}}{2}\cos \dfrac{{A - C}}{2} = 4{\sin ^2}\dfrac{1}{2}B\]
\[ \Rightarrow \cos \dfrac{{A + C}}{2}\cos \dfrac{{A - C}}{2} = 2{\sin ^2}\dfrac{1}{2}B\]
Since ABC is a triangle, thus \[A + B + C = \pi \] \[ \Rightarrow A + C = \pi - B\]
\[ \Rightarrow \cos \dfrac{{\pi - B}}{2}\cos \dfrac{{A - C}}{2} = 2{\sin ^2}\dfrac{1}{2}B\]
\[ \Rightarrow \cos \left( {\dfrac{\pi }{2} - \dfrac{B}{2}} \right)\cos \dfrac{{A - C}}{2} = 2{\sin ^2}\dfrac{1}{2}B\]
Now we applying complementary angle formula \[\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \]
\[ \Rightarrow \sin \dfrac{B}{2}\cos \dfrac{{A - C}}{2} = 2{\sin ^2}\dfrac{1}{2}B\]
Cancel out \[\sin \dfrac{B}{2}\] from both sides
\[ \Rightarrow \cos \dfrac{{A - C}}{2} = 2\sin \dfrac{1}{2}B\]
Now applying the formula \[\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b\]
\[ \Rightarrow \cos \dfrac{A}{2}\cos \dfrac{C}{2} + \sin \dfrac{A}{2}\sin \dfrac{C}{2} = 2\sin \dfrac{1}{2}B\]
Now using the half angle formula for triangle
\[ \Rightarrow \sqrt {\dfrac{{s\left( {s - a} \right)}}{{bc}}} \sqrt {\dfrac{{s\left( {s - c} \right)}}{{ab}}} + \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} = 2\sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \]
Now simplify the above equation
\[ \Rightarrow \dfrac{s}{b}\sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} + \dfrac{{s - b}}{b}\sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} = 2\sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \]
Cancel out \[\sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \] from both sides
\[ \Rightarrow \dfrac{s}{b} + \dfrac{{s - b}}{b} = 2\]
\[ \Rightarrow \dfrac{{2s - b}}{b} = 2\]
Substitute \[2s = a + b + c\]
\[ \Rightarrow \dfrac{{a + b + c - b}}{b} = 2\]
\[ \Rightarrow a + c = 2b\]
It is condition of AP. Thus a, b, c are in AP.
Hence option A is the correct option.
Note:Students often confused with sum of cosine formula and difference of cosine formula. They used a wrong formula that is \[\cos \left( {a - b} \right) = \cos a\cos b - \sin a\sin b\]. The correct formulas are \[\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b\] and \[\cos \left( {a + b} \right) = \cos a\cos b - \sin a\sin b\].
Formula used:
Trigonometry identities
\[\cos a + \cos b = 2\cos \dfrac{{a + b}}{2}\cos \dfrac{{a - b}}{2}\]
\[\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b\]
Half angle formula for triangle
\[\cos \dfrac{A}{2} = \sqrt {\dfrac{{s\left( {s - a} \right)}}{{bc}}} \]
\[\cos \dfrac{B}{2} = \sqrt {\dfrac{{s\left( {s - b} \right)}}{{ca}}} \]
\[\cos \dfrac{C}{2} = \sqrt {\dfrac{{s\left( {s - c} \right)}}{{ab}}} \]
\[\sin \dfrac{A}{2} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} \]
\[\sin \dfrac{B}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \]
\[\sin \dfrac{C}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} \]
Complete step by step solution:
Given equation is
\[\cos A + \cos C = 4{\sin ^2}\dfrac{1}{2}B\]
Now we will apply the trigonometry formula \[\cos a + \cos b = 2\cos \dfrac{{a + b}}{2}\cos \dfrac{{a - b}}{2}\] on the left side
\[ \Rightarrow 2\cos \dfrac{{A + C}}{2}\cos \dfrac{{A - C}}{2} = 4{\sin ^2}\dfrac{1}{2}B\]
\[ \Rightarrow \cos \dfrac{{A + C}}{2}\cos \dfrac{{A - C}}{2} = 2{\sin ^2}\dfrac{1}{2}B\]
Since ABC is a triangle, thus \[A + B + C = \pi \] \[ \Rightarrow A + C = \pi - B\]
\[ \Rightarrow \cos \dfrac{{\pi - B}}{2}\cos \dfrac{{A - C}}{2} = 2{\sin ^2}\dfrac{1}{2}B\]
\[ \Rightarrow \cos \left( {\dfrac{\pi }{2} - \dfrac{B}{2}} \right)\cos \dfrac{{A - C}}{2} = 2{\sin ^2}\dfrac{1}{2}B\]
Now we applying complementary angle formula \[\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \]
\[ \Rightarrow \sin \dfrac{B}{2}\cos \dfrac{{A - C}}{2} = 2{\sin ^2}\dfrac{1}{2}B\]
Cancel out \[\sin \dfrac{B}{2}\] from both sides
\[ \Rightarrow \cos \dfrac{{A - C}}{2} = 2\sin \dfrac{1}{2}B\]
Now applying the formula \[\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b\]
\[ \Rightarrow \cos \dfrac{A}{2}\cos \dfrac{C}{2} + \sin \dfrac{A}{2}\sin \dfrac{C}{2} = 2\sin \dfrac{1}{2}B\]
Now using the half angle formula for triangle
\[ \Rightarrow \sqrt {\dfrac{{s\left( {s - a} \right)}}{{bc}}} \sqrt {\dfrac{{s\left( {s - c} \right)}}{{ab}}} + \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} = 2\sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \]
Now simplify the above equation
\[ \Rightarrow \dfrac{s}{b}\sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} + \dfrac{{s - b}}{b}\sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} = 2\sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \]
Cancel out \[\sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \] from both sides
\[ \Rightarrow \dfrac{s}{b} + \dfrac{{s - b}}{b} = 2\]
\[ \Rightarrow \dfrac{{2s - b}}{b} = 2\]
Substitute \[2s = a + b + c\]
\[ \Rightarrow \dfrac{{a + b + c - b}}{b} = 2\]
\[ \Rightarrow a + c = 2b\]
It is condition of AP. Thus a, b, c are in AP.
Hence option A is the correct option.
Note:Students often confused with sum of cosine formula and difference of cosine formula. They used a wrong formula that is \[\cos \left( {a - b} \right) = \cos a\cos b - \sin a\sin b\]. The correct formulas are \[\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b\] and \[\cos \left( {a + b} \right) = \cos a\cos b - \sin a\sin b\].
Recently Updated Pages
Environmental Chemistry Chapter for JEE Main Chemistry

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Biot Savart Law - Statement, Derivation and FAQ

Newton’s Laws of Motion – Definition, Principles, and Examples

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
