
In \[\Delta ABC\] find \[a\sin \left( {B - C} \right) + b\sin \left( {C - A} \right) + c\sin \left( {A - B} \right)\]
A. 0
B. \[a + b + c\]
C. \[{a^2} + {b^2} + {c^2}\]
D. \[2\left( {{a^2} + {b^2} + {c^2}} \right)\]
Answer
219k+ views
Hint: Using sine law, we will find the value \[\sin A\], \[\sin B\], and \[\sin C\]. Then using difference formula of sin we will find the value of of \[\sin \left( {B - C} \right)\], \[\sin \left( {C - A} \right)\], \[\sin \left( {A - B} \right)\] and substitute in the given expression. After simply the expression we will get the required solution.
Formula used:
Sine law:
\[\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}}\]
Difference of sine function formula:
\[\sin \left( {a - b} \right) = \sin a\cos b - \cos a\sin b\]
Complete step by step solution:
Given expression is
\[a\sin \left( {B - C} \right) + b\sin \left( {C - A} \right) + c\sin \left( {A - B} \right)\]
We know that, \[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c} = k(say)\]
Now calculating the value of \[\sin A\], \[\sin B\], and \[\sin C\].
\[\sin A = ak\],\[\sin B = bk\], \[\sin C = ck\]
Then find \[\sin \left( {B - C} \right)\], \[\sin \left( {C - A} \right)\], \[\sin \left( {A - B} \right)\] using the formula \[\sin \left( {a - b} \right) = \sin a\cos b - \cos a\sin b\]
\[\sin \left( {B - C} \right) = \sin B\cos C - \cos B\sin C\]
\[ \Rightarrow \sin \left( {B - C} \right) = bk\cos C - ck\cos B\]
\[\sin \left( {C - A} \right) = \sin C\cos A - \cos C\sin A\]
\[ \Rightarrow \sin \left( {C - A} \right) = ck\cos A - ak\cos C\]
\[\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B\]
\[ \Rightarrow \sin \left( {A - B} \right) = ak\cos B - bk\cos A\]
Now putting the value of \[\sin \left( {B - C} \right)\], \[\sin \left( {C - A} \right)\], \[\sin \left( {A - B} \right)\]in the given expression
\[ = a\left( {bk\cos C - ck\cos B} \right) + b\left( {ck\cos A - ak\cos C} \right) + c\left( {ak\cos B - bk\cos A} \right)\]
Simplify the above equation
\[ = abk\cos C - ack\cos B + bck\cos A - abk\cos C + cak\cos B - bck\cos A\]
=0
Hence option A is the correct option
Note: If we calculate the value of a, b, c from the sine law and substitute it in the given expression, then we are unable to reach the correct answer. So from the sine law we will find the \[\sin A\], \[\sin B\], and \[\sin C\].
Formula used:
Sine law:
\[\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}}\]
Difference of sine function formula:
\[\sin \left( {a - b} \right) = \sin a\cos b - \cos a\sin b\]
Complete step by step solution:
Given expression is
\[a\sin \left( {B - C} \right) + b\sin \left( {C - A} \right) + c\sin \left( {A - B} \right)\]
We know that, \[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c} = k(say)\]
Now calculating the value of \[\sin A\], \[\sin B\], and \[\sin C\].
\[\sin A = ak\],\[\sin B = bk\], \[\sin C = ck\]
Then find \[\sin \left( {B - C} \right)\], \[\sin \left( {C - A} \right)\], \[\sin \left( {A - B} \right)\] using the formula \[\sin \left( {a - b} \right) = \sin a\cos b - \cos a\sin b\]
\[\sin \left( {B - C} \right) = \sin B\cos C - \cos B\sin C\]
\[ \Rightarrow \sin \left( {B - C} \right) = bk\cos C - ck\cos B\]
\[\sin \left( {C - A} \right) = \sin C\cos A - \cos C\sin A\]
\[ \Rightarrow \sin \left( {C - A} \right) = ck\cos A - ak\cos C\]
\[\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B\]
\[ \Rightarrow \sin \left( {A - B} \right) = ak\cos B - bk\cos A\]
Now putting the value of \[\sin \left( {B - C} \right)\], \[\sin \left( {C - A} \right)\], \[\sin \left( {A - B} \right)\]in the given expression
\[ = a\left( {bk\cos C - ck\cos B} \right) + b\left( {ck\cos A - ak\cos C} \right) + c\left( {ak\cos B - bk\cos A} \right)\]
Simplify the above equation
\[ = abk\cos C - ack\cos B + bck\cos A - abk\cos C + cak\cos B - bck\cos A\]
=0
Hence option A is the correct option
Note: If we calculate the value of a, b, c from the sine law and substitute it in the given expression, then we are unable to reach the correct answer. So from the sine law we will find the \[\sin A\], \[\sin B\], and \[\sin C\].
Recently Updated Pages
The maximum number of equivalence relations on the-class-11-maths-JEE_Main

A train is going from London to Cambridge stops at class 11 maths JEE_Main

Find the reminder when 798 is divided by 5 class 11 maths JEE_Main

An aeroplane left 50 minutes later than its schedu-class-11-maths-JEE_Main

A man on the top of a vertical observation tower o-class-11-maths-JEE_Main

In an election there are 8 candidates out of which class 11 maths JEE_Main

Trending doubts
Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Electromagnetic Waves and Their Importance

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
Understanding Average and RMS Value in Electrical Circuits

Common Ion Effect: Concept, Applications, and Problem-Solving

NCERT Solutions For Class 11 Maths Chapter 13 Statistics - 2025-26

What Are Elastic Collisions in One Dimension?

Understanding Excess Pressure Inside a Liquid Drop

NCERT Solutions For Class 10 Maths Chapter 10 Conic Sections Exercise 10.3 - 2025-26

