
In \[\Delta ABC\] find \[a\sin \left( {B - C} \right) + b\sin \left( {C - A} \right) + c\sin \left( {A - B} \right)\]
A. 0
B. \[a + b + c\]
C. \[{a^2} + {b^2} + {c^2}\]
D. \[2\left( {{a^2} + {b^2} + {c^2}} \right)\]
Answer
161.1k+ views
Hint: Using sine law, we will find the value \[\sin A\], \[\sin B\], and \[\sin C\]. Then using difference formula of sin we will find the value of of \[\sin \left( {B - C} \right)\], \[\sin \left( {C - A} \right)\], \[\sin \left( {A - B} \right)\] and substitute in the given expression. After simply the expression we will get the required solution.
Formula used:
Sine law:
\[\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}}\]
Difference of sine function formula:
\[\sin \left( {a - b} \right) = \sin a\cos b - \cos a\sin b\]
Complete step by step solution:
Given expression is
\[a\sin \left( {B - C} \right) + b\sin \left( {C - A} \right) + c\sin \left( {A - B} \right)\]
We know that, \[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c} = k(say)\]
Now calculating the value of \[\sin A\], \[\sin B\], and \[\sin C\].
\[\sin A = ak\],\[\sin B = bk\], \[\sin C = ck\]
Then find \[\sin \left( {B - C} \right)\], \[\sin \left( {C - A} \right)\], \[\sin \left( {A - B} \right)\] using the formula \[\sin \left( {a - b} \right) = \sin a\cos b - \cos a\sin b\]
\[\sin \left( {B - C} \right) = \sin B\cos C - \cos B\sin C\]
\[ \Rightarrow \sin \left( {B - C} \right) = bk\cos C - ck\cos B\]
\[\sin \left( {C - A} \right) = \sin C\cos A - \cos C\sin A\]
\[ \Rightarrow \sin \left( {C - A} \right) = ck\cos A - ak\cos C\]
\[\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B\]
\[ \Rightarrow \sin \left( {A - B} \right) = ak\cos B - bk\cos A\]
Now putting the value of \[\sin \left( {B - C} \right)\], \[\sin \left( {C - A} \right)\], \[\sin \left( {A - B} \right)\]in the given expression
\[ = a\left( {bk\cos C - ck\cos B} \right) + b\left( {ck\cos A - ak\cos C} \right) + c\left( {ak\cos B - bk\cos A} \right)\]
Simplify the above equation
\[ = abk\cos C - ack\cos B + bck\cos A - abk\cos C + cak\cos B - bck\cos A\]
=0
Hence option A is the correct option
Note: If we calculate the value of a, b, c from the sine law and substitute it in the given expression, then we are unable to reach the correct answer. So from the sine law we will find the \[\sin A\], \[\sin B\], and \[\sin C\].
Formula used:
Sine law:
\[\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}}\]
Difference of sine function formula:
\[\sin \left( {a - b} \right) = \sin a\cos b - \cos a\sin b\]
Complete step by step solution:
Given expression is
\[a\sin \left( {B - C} \right) + b\sin \left( {C - A} \right) + c\sin \left( {A - B} \right)\]
We know that, \[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c} = k(say)\]
Now calculating the value of \[\sin A\], \[\sin B\], and \[\sin C\].
\[\sin A = ak\],\[\sin B = bk\], \[\sin C = ck\]
Then find \[\sin \left( {B - C} \right)\], \[\sin \left( {C - A} \right)\], \[\sin \left( {A - B} \right)\] using the formula \[\sin \left( {a - b} \right) = \sin a\cos b - \cos a\sin b\]
\[\sin \left( {B - C} \right) = \sin B\cos C - \cos B\sin C\]
\[ \Rightarrow \sin \left( {B - C} \right) = bk\cos C - ck\cos B\]
\[\sin \left( {C - A} \right) = \sin C\cos A - \cos C\sin A\]
\[ \Rightarrow \sin \left( {C - A} \right) = ck\cos A - ak\cos C\]
\[\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B\]
\[ \Rightarrow \sin \left( {A - B} \right) = ak\cos B - bk\cos A\]
Now putting the value of \[\sin \left( {B - C} \right)\], \[\sin \left( {C - A} \right)\], \[\sin \left( {A - B} \right)\]in the given expression
\[ = a\left( {bk\cos C - ck\cos B} \right) + b\left( {ck\cos A - ak\cos C} \right) + c\left( {ak\cos B - bk\cos A} \right)\]
Simplify the above equation
\[ = abk\cos C - ack\cos B + bck\cos A - abk\cos C + cak\cos B - bck\cos A\]
=0
Hence option A is the correct option
Note: If we calculate the value of a, b, c from the sine law and substitute it in the given expression, then we are unable to reach the correct answer. So from the sine law we will find the \[\sin A\], \[\sin B\], and \[\sin C\].
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations
