
In any triangle $AB=2, BC=4, CA=3$ and $D$ is the midpoint of $BC$, then [Roorkee 1995]
A. $\cos B=\dfrac{11}{6}$
B. $\cos B=\dfrac{7}{8}$
C. $AD=2.4$
D. $A{{D}^{2}}=2.5$
Answer
163.8k+ views
Hint:
In this case, one side of the triangle has a mid-point $D$ which means that it divides the line into two equal parts. To find the correct relation for the provided data we will use the cosine rules and simplify the expression.
Formula Used:
Laws of cosine for triangle $ABC$ whose length is $a, b$, and $c$ respectively is given by;
$a^2 = b^2 + c^2 − 2bc.\cos A\\
b^2 = a^2 +c^2 − 2ac.\cos B\\
c^2 = a^2 + b^2 − 2ab.\cos C$.
Complete step-by-step solution:
We have given, triangle $AB=2, BC=4, CA=3$ and $D$ is the midpoint of $BC$ which means it divides $BC$ into two equal parts.

Using the law of cosine in triangle ABD we have;
$AD^2=AB^2+BD^2-2AB.BD \cos B$
Substituting values we get;
$\cos B=\dfrac{{{2}^{2}}+{{4}^{2}}-{{3}^{2}}}{2\times 2\times 4}=\dfrac{11}{16}\\
\dfrac{11}{16}=\dfrac{{{2}^{2}}+{{2}^{2}}-A{{D}^{2}}}{2\times 2\times 2}\\
\Rightarrow A{{D}^{2}}=2.5$
Hence, $A{{D}^{2}}=2.5$.
So, option D is the correct option.
Note:
Recall that a midway divides a line into two equal segments. Students frequently mistake when attempting to determine how the given data relate to one another. It will become easier to draw the triangle with the information provided. To answer this type of question, you must be familiar with the cosine rule.
Additional Information:
One of the most commonly applied properties in geometry is the triangle's angle sum property. Most often, the unknown angles are calculated using this attribute. The angle sum property of a triangle states that the sum of a triangle's three internal angles is $180$ degrees. A closed shape with both interior and exterior angles, a triangle is made up of three line segments. When the values of the other two angles are known, one can apply the angle sum property to determine the measure of an unknown interior angle.
In this case, one side of the triangle has a mid-point $D$ which means that it divides the line into two equal parts. To find the correct relation for the provided data we will use the cosine rules and simplify the expression.
Formula Used:
Laws of cosine for triangle $ABC$ whose length is $a, b$, and $c$ respectively is given by;
$a^2 = b^2 + c^2 − 2bc.\cos A\\
b^2 = a^2 +c^2 − 2ac.\cos B\\
c^2 = a^2 + b^2 − 2ab.\cos C$.
Complete step-by-step solution:
We have given, triangle $AB=2, BC=4, CA=3$ and $D$ is the midpoint of $BC$ which means it divides $BC$ into two equal parts.

Using the law of cosine in triangle ABD we have;
$AD^2=AB^2+BD^2-2AB.BD \cos B$
Substituting values we get;
$\cos B=\dfrac{{{2}^{2}}+{{4}^{2}}-{{3}^{2}}}{2\times 2\times 4}=\dfrac{11}{16}\\
\dfrac{11}{16}=\dfrac{{{2}^{2}}+{{2}^{2}}-A{{D}^{2}}}{2\times 2\times 2}\\
\Rightarrow A{{D}^{2}}=2.5$
Hence, $A{{D}^{2}}=2.5$.
So, option D is the correct option.
Note:
Recall that a midway divides a line into two equal segments. Students frequently mistake when attempting to determine how the given data relate to one another. It will become easier to draw the triangle with the information provided. To answer this type of question, you must be familiar with the cosine rule.
Additional Information:
One of the most commonly applied properties in geometry is the triangle's angle sum property. Most often, the unknown angles are calculated using this attribute. The angle sum property of a triangle states that the sum of a triangle's three internal angles is $180$ degrees. A closed shape with both interior and exterior angles, a triangle is made up of three line segments. When the values of the other two angles are known, one can apply the angle sum property to determine the measure of an unknown interior angle.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NEET 2025 – Every New Update You Need to Know
