
In an X-ray tube, electrons bombarding the target produce an X-ray of minimum wavelength $1\mathop {\text{A}}\limits^o $. The energy of the bombarding electron will be:
(A) 100 eV
(B) 14375 eV
(C) 12000 eV
(D) 12375 eV
Answer
220.8k+ views
HintHere the energy of the electron bombarding on the target will be given by the energy of the X-ray photons which are released using the wavelength of the X-ray given in the question from the formula $E = \dfrac{{hc}}{\lambda }$
Formula Used
In this solution we will be using the following formula,
$E = h\upsilon $
where $h$ is the Planck’s constant
$E$ is the energy and $\upsilon $ is the frequency of the wave
and $\upsilon = \dfrac{c}{\lambda }$ where $\lambda $ is the wavelength of the wave and $c$ is the velocity of light.
Complete step-by-step answer:
When an electron bombards the target, the kinetic energy of the electron transfers in the interaction and a X-ray with the highest possible energy is released.
So the energy of the electron will be the energy of the X-ray. Now from the energy of the X-ray, we can find its frequency by the formula
$E = h\upsilon $ where $\upsilon $ is the frequency of the wave
The frequency can be written as, $\upsilon = \dfrac{c}{\lambda }$
So substituting we get,
$E = \dfrac{{hc}}{\lambda }$
From the question we have, the wavelength as $\lambda = 1\mathop {\text{A}}\limits^o = 1 \times {10^{ - 10}}m$
and the value of the speed of light and the Planck’s constant are,
$c = 3 \times {10^8}m/s$ and $h = 6.6 \times {10^{ - 34}}{m^2}kg/s$
So substituting all the values we get
$E = \dfrac{{6.6 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}{{1 \times {{10}^{ - 10}}}}$
On doing the calculation we get,
$E = 1.98 \times {10^{ - 15}}J$
But the options are given in electron-volt. So to convert, we divide the value obtained by a factor of $1.6 \times {10^{ - 19}}$. Hence we get,
$E = \dfrac{{1.98 \times {{10}^{ - 15}}}}{{1.6 \times {{10}^{ - 19}}}}eV$
On doing the division we get,
$E = 12375eV$
So the correct answer is option D.
Note: In an X-ray tube, current is passed through the tungsten filament which enables it to get heated up and releases electrons by thermionic emission. These electrons bombard the target which results in conversion of energy into heat and X-ray photons.
Formula Used
In this solution we will be using the following formula,
$E = h\upsilon $
where $h$ is the Planck’s constant
$E$ is the energy and $\upsilon $ is the frequency of the wave
and $\upsilon = \dfrac{c}{\lambda }$ where $\lambda $ is the wavelength of the wave and $c$ is the velocity of light.
Complete step-by-step answer:
When an electron bombards the target, the kinetic energy of the electron transfers in the interaction and a X-ray with the highest possible energy is released.
So the energy of the electron will be the energy of the X-ray. Now from the energy of the X-ray, we can find its frequency by the formula
$E = h\upsilon $ where $\upsilon $ is the frequency of the wave
The frequency can be written as, $\upsilon = \dfrac{c}{\lambda }$
So substituting we get,
$E = \dfrac{{hc}}{\lambda }$
From the question we have, the wavelength as $\lambda = 1\mathop {\text{A}}\limits^o = 1 \times {10^{ - 10}}m$
and the value of the speed of light and the Planck’s constant are,
$c = 3 \times {10^8}m/s$ and $h = 6.6 \times {10^{ - 34}}{m^2}kg/s$
So substituting all the values we get
$E = \dfrac{{6.6 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}{{1 \times {{10}^{ - 10}}}}$
On doing the calculation we get,
$E = 1.98 \times {10^{ - 15}}J$
But the options are given in electron-volt. So to convert, we divide the value obtained by a factor of $1.6 \times {10^{ - 19}}$. Hence we get,
$E = \dfrac{{1.98 \times {{10}^{ - 15}}}}{{1.6 \times {{10}^{ - 19}}}}eV$
On doing the division we get,
$E = 12375eV$
So the correct answer is option D.
Note: In an X-ray tube, current is passed through the tungsten filament which enables it to get heated up and releases electrons by thermionic emission. These electrons bombard the target which results in conversion of energy into heat and X-ray photons.
Recently Updated Pages
[Awaiting input: Please provide the content from "Ask AI Response," "Competitor 1," and "Competitor 2," so I can perform the analysis and synthesize the requested metadata and headings.]

A square frame of side 10 cm and a long straight wire class 12 physics JEE_Main

The work done in slowly moving an electron of charge class 12 physics JEE_Main

Two identical charged spheres suspended from a common class 12 physics JEE_Main

According to Bohrs theory the timeaveraged magnetic class 12 physics JEE_Main

ill in the blanks Pure tungsten has A Low resistivity class 12 physics JEE_Main

Trending doubts
Understanding Uniform Acceleration in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding Collisions: Types and Examples for Students

Step-by-Step Guide to Young’s Double Slit Experiment Derivation

Other Pages
Understanding Entropy Changes in Different Processes

Common Ion Effect: Concept, Applications, and Problem-Solving

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

What Are Elastic Collisions in One Dimension?

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Diffraction of Light - Young’s Single Slit Experiment

