
In a triangle $\vartriangle ABC$, if $a=2,b=4$and $\angle C={{60}^{0}}$ then $\angle A$ and $\angle B$ are equal to,
A. \[{{90}^{0}},{{30}^{0}}\]
B. \[{{60}^{0}},{{60}^{0}}\]
C. \[{{30}^{0}},{{90}^{0}}\]
D. \[{{60}^{0}},{{45}^{0}}\]
Answer
164.1k+ views
Hint: To solve this question, we will use cosine rule \[{{c}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\cos C\]. We will substitute the values of the sides $a=2,b=4$ and angle $\angle C={{60}^{0}}$ and find the value of $c$. Then we will use sine Law $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$ to derive the value of the angles $\angle A$ and $\angle B$.
Formula used:
Law of sine:
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule:
\[{{c}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\cos C\]
Complete step-by-step solution:
We have been given a triangle $\vartriangle ABC$ having sides $a=2,b=4$ and angle $\angle C={{60}^{0}}$ and we have to find the value of angles $\angle A$ and $\angle B$.
We will use cosine rule \[{{c}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\cos C\]and substitute the given values of sides and angles and derive the value of side length $c$.
\[\begin{align}
& {{c}^{2}}={{2}^{2}}+{{4}^{2}}-2(2\times 4)\cos {{60}^{0}} \\
& {{c}^{2}}=4+16-16\times \frac{1}{2} \\
& {{c}^{2}}=12 \\
& c=2\sqrt{3}
\end{align}\]
We will now use Law of sine $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$to find the angles $\angle A$ and $\angle B$.
We will first take $\frac{a}{\sin A}=\frac{c}{\sin C}$ to find the angle $\angle A$.
Now we will substitute the value of the sides $a,c$ and angle $\angle C={{60}^{0}}$ in $\frac{a}{\sin A}=\frac{c}{\sin C}$.
$\begin{align}
& \frac{2}{\sin A}=\frac{2\sqrt{3}}{\sin {{60}^{0}}} \\
& \frac{1}{\sin A}=\frac{\sqrt{3}}{\frac{\sqrt{3}}{2}} \\
& \sin A=\frac{1}{2} \\
& \sin A=\sin {{30}^{0}} \\
& A={{30}^{0}}
\end{align}$
Now we will take $\frac{b}{\sin B}=\frac{c}{\sin C}$ to find the value of angle $\angle B$.
We will now substitute the value of the sides $b,c$ and angle $\angle C={{60}^{0}}$ in $\frac{b}{\sin B}=\frac{c}{\sin C}$.
\[\begin{align}
& \frac{4}{\sin B}=\frac{2\sqrt{3}}{\sin {{60}^{0}}} \\
& \frac{4}{\sin B}=\frac{2\sqrt{3}}{\frac{\sqrt{3}}{2}} \\
& \sin B=1
\end{align}\]
The value $1$ of sine is at angle $\sin {{90}^{0}}$.
$\begin{align}
& \sin B=\sin {{90}^{0}} \\
& B={{90}^{0}} \\
\end{align}$
The value of the angles $\angle A$ and $\angle B$ of triangle having sides $a=2,b=4$ and angle $\angle C={{60}^{0}}$are $A={{30}^{0}}$ and \[B={{90}^{0}}\]. Hence the correct option is (C).
Note:
After deriving any one of the angles $\angle A$ and $\angle B$ using sine law we could have also used angle sum property to find the third angle. According to that property, the sum of all the angles is equal to ${{180}^{0}}$. As in the solution above after calculating the value of the angle $A={{30}^{0}}$ we used sine law.
Here we will find angle $\angle B$ using angle sum property.
$\begin{align}
& A+B+C={{180}^{0}} \\
& 30+B+60={{180}^{0}} \\
& B={{90}^{0}}
\end{align}$
Formula used:
Law of sine:
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule:
\[{{c}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\cos C\]
Complete step-by-step solution:
We have been given a triangle $\vartriangle ABC$ having sides $a=2,b=4$ and angle $\angle C={{60}^{0}}$ and we have to find the value of angles $\angle A$ and $\angle B$.
We will use cosine rule \[{{c}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\cos C\]and substitute the given values of sides and angles and derive the value of side length $c$.
\[\begin{align}
& {{c}^{2}}={{2}^{2}}+{{4}^{2}}-2(2\times 4)\cos {{60}^{0}} \\
& {{c}^{2}}=4+16-16\times \frac{1}{2} \\
& {{c}^{2}}=12 \\
& c=2\sqrt{3}
\end{align}\]
We will now use Law of sine $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$to find the angles $\angle A$ and $\angle B$.
We will first take $\frac{a}{\sin A}=\frac{c}{\sin C}$ to find the angle $\angle A$.
Now we will substitute the value of the sides $a,c$ and angle $\angle C={{60}^{0}}$ in $\frac{a}{\sin A}=\frac{c}{\sin C}$.
$\begin{align}
& \frac{2}{\sin A}=\frac{2\sqrt{3}}{\sin {{60}^{0}}} \\
& \frac{1}{\sin A}=\frac{\sqrt{3}}{\frac{\sqrt{3}}{2}} \\
& \sin A=\frac{1}{2} \\
& \sin A=\sin {{30}^{0}} \\
& A={{30}^{0}}
\end{align}$
Now we will take $\frac{b}{\sin B}=\frac{c}{\sin C}$ to find the value of angle $\angle B$.
We will now substitute the value of the sides $b,c$ and angle $\angle C={{60}^{0}}$ in $\frac{b}{\sin B}=\frac{c}{\sin C}$.
\[\begin{align}
& \frac{4}{\sin B}=\frac{2\sqrt{3}}{\sin {{60}^{0}}} \\
& \frac{4}{\sin B}=\frac{2\sqrt{3}}{\frac{\sqrt{3}}{2}} \\
& \sin B=1
\end{align}\]
The value $1$ of sine is at angle $\sin {{90}^{0}}$.
$\begin{align}
& \sin B=\sin {{90}^{0}} \\
& B={{90}^{0}} \\
\end{align}$
The value of the angles $\angle A$ and $\angle B$ of triangle having sides $a=2,b=4$ and angle $\angle C={{60}^{0}}$are $A={{30}^{0}}$ and \[B={{90}^{0}}\]. Hence the correct option is (C).
Note:
After deriving any one of the angles $\angle A$ and $\angle B$ using sine law we could have also used angle sum property to find the third angle. According to that property, the sum of all the angles is equal to ${{180}^{0}}$. As in the solution above after calculating the value of the angle $A={{30}^{0}}$ we used sine law.
Here we will find angle $\angle B$ using angle sum property.
$\begin{align}
& A+B+C={{180}^{0}} \\
& 30+B+60={{180}^{0}} \\
& B={{90}^{0}}
\end{align}$
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
