
In a triangle ABC, then find \[{a^3}\cos \left( {B - C} \right) + {b^3}\cos \left( {C - A} \right) + {c^3}\cos \left( {A - B} \right)\].
A. abc
B. 3abc
c. a + b + c
D. None of these
Answer
216.3k+ views
Hint: First we will use the sine rule to find the value of a, b, and c. Then substitute the value of a, b, and c in the given expression. Then we will apply trigonometry identities to simplify the given expression.
Formula used:
Sine laws:
\[\dfrac{a}{{\sin A}} = \dfrac{b}{{b\sin B}} = \dfrac{c}{{\sin C}}\]
Trigonometry identities:
\[2\sin \left( {a + b} \right)\cos \left( {a - b} \right) = \sin 2a + \sin 2b\]
\[2\sin \left( {a + b} \right)\cos \left( {a - b} \right) = \sin 2a + \sin 2b\]
\[\sin 2\theta = 2\sin \theta \cos \theta \]
Supplementary angle of trigonometry
\[\sin \left( {\pi - \theta } \right) = \sin \theta \]
Complete step by step solution:
We know that, \[\dfrac{a}{{\sin A}} = \dfrac{b}{{b\sin B}} = \dfrac{c}{{\sin C}} = k\]
\[a = k\sin A\], \[b = k\sin B\], \[c = k\sin C\]
Putting \[a = k\sin A\], \[b = k\sin B\], \[c = k\sin C\], in the expression \[{a^3}\cos \left( {B - C} \right) + {b^3}\cos \left( {C - A} \right) + {c^3}\cos \left( {A - B} \right)\]:
\[{\left( {k\sin A} \right)^3}\cos \left( {B - C} \right) + {\left( {k\sin B} \right)^3}\cos \left( {C - A} \right) + {\left( {k\sin C} \right)^3}\cos \left( {A - B} \right)\]
\[ = {k^3}{\sin ^3}A\cos \left( {B - C} \right) + {k^3}{\sin ^3}B\cos \left( {C - A} \right) + {k^3}{\sin ^3}C\cos \left( {A - B} \right)\]
\[ = {k^3}{\sin ^3}A\cos \left( {B - C} \right) + {k^3}{\sin ^3}B\cos \left( {C - A} \right) + {k^3}{\sin ^3}C\cos \left( {A - B} \right)\]
We know that, the sum of angles of a triangle is \[\pi \].
Thus, \[A + B + C = \pi \].
\[\begin{array}{l} = {k^3}{\sin ^2}A\sin \left[ {\pi - \left( {B + C} \right)} \right]\cos \left( {B - C} \right) + {k^3}{\sin ^2}B\sin \left[ {\pi - \left( {A + C} \right)} \right]\cos \left( {C - A} \right)\\ + {k^3}{\sin ^2}C\sin \left[ {\pi - \left( {A + B} \right)} \right]\cos \left( {A - B} \right)\end{array}\]
Applying supplementary angle of triangle:
\[ = {k^3}{\sin ^2}A\sin \left( {B + C} \right)\cos \left( {B - C} \right) + {k^3}{\sin ^2}B\sin \left( {A + C} \right)\cos \left( {C - A} \right) + {k^3}{\sin ^2}C\sin \left( {A + B} \right)\cos \left( {A - B} \right)\]
Applying the formula \[2\sin \left( {a + b} \right)\cos \left( {a - b} \right) = \sin 2a + \sin 2b\]
\[ = \dfrac{{{k^3}}}{2}\left[ {{{\sin }^2}A \cdot 2\sin \left( {B + C} \right)\cos \left( {B - C} \right) + {{\sin }^2}B \cdot 2\sin \left( {A + C} \right)\cos \left( {C - A} \right) + {{\sin }^2}C \cdot 2\sin \left( {A + B} \right)\cos \left( {A - B} \right)} \right]\]\[ = \dfrac{{{k^3}}}{2}\left[ {{{\sin }^2}A\left( {\sin 2B + \sin 2C} \right) + {{\sin }^2}B\left( {\sin 2A + \sin 2C} \right) + {{\sin }^2}C\left( {\sin 2A + \sin 2B} \right)} \right]\]
Now applying \[\sin 2\theta = 2\sin \theta \cos \theta \]
\[ = \dfrac{{{k^3}}}{2}\left[ \begin{array}{l}\left( {{{\sin }^2}A \cdot 2\sin B\cos B + {{\sin }^2}A \cdot 2\sin C\cos C} \right) + \left( {{{\sin }^2}B \cdot 2\sin A\cos A + {{\sin }^2}B \cdot 2\sin C\cos C} \right)\\ + \left( {{{\sin }^2}C \cdot 2\sin A\cos A + {{\sin }^2}C \cdot 2\sin B\cos B} \right)\end{array} \right]\]
\[ = \dfrac{{{k^3}}}{2} \cdot 2\left[ \begin{array}{l}{\sin ^2}A\sin B\cos B + {\sin ^2}A\sin C\cos C + {\sin ^2}B\sin A\cos A + {\sin ^2}B\sin C\cos C\\ + {\sin ^2}C\sin A\cos A + {\sin ^2}C\sin B\cos B\end{array} \right]\]
\[ = {k^3}\left[ \begin{array}{l}\left( {{{\sin }^2}A\sin B\cos B + {{\sin }^2}B\sin A\cos A} \right) + \left( {{{\sin }^2}A\sin C\cos C + {{\sin }^2}C\sin A\cos A} \right)\\ + \left( {{{\sin }^2}B\sin C\cos C + {{\sin }^2}C\sin B\cos B} \right)\end{array} \right]\]
\[ = {k^3}\left[ \begin{array}{l}\sin A\sin B\left( {\sin A\cos B + \sin B\cos A} \right) + \sin A\sin C\left( {\sin A\cos C + \sin C\cos A} \right)\\ + \sin B\sin C\left( {\sin B\cos C + \sin C\cos B} \right)\end{array} \right]\]
Applying \[\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B\]
\[ = {k^3}\left[ {\sin A\sin B\sin \left( {A + B} \right) + \sin A\sin C\sin \left( {A + C} \right) + \sin B\sin C\sin \left( {B + C} \right)} \right]\]
We know that, \[A + B + C = \pi \]
\[ = {k^3}\left[ {\sin A\sin B\sin \left( {\pi - C} \right) + \sin A\sin C\sin \left( {\pi - B} \right) + \sin B\sin C\sin \left( {\pi - A} \right)} \right]\]
Now applying supplementary angle \[\sin \left( {\pi - \theta } \right) = \sin \theta \]
\[ = {k^3}\left[ {\sin A\sin B\sin C + \sin A\sin C\sin B + \sin B\sin C\sin A} \right]\]
\[ = k\sin A \cdot k\sin B \cdot k\sin C + k\sin A \cdot k\sin C \cdot k\sin B + k\sin B \cdot k\sin C \cdot k\sin A\]
Putting \[a = k\sin A\], \[b = k\sin B\], \[c = k\sin C\]
\[ = abc + abc + abc\]
\[ = 3abc\]
Hence option B is the correct option.
Note: Students often do a common mistake when they put \[a = k\sin A\], \[b = k\sin B\], \[c = k\sin C\] in the given expression. They replace \[{\sin ^3}A\], \[{\sin ^3}B\], \[{\sin ^3}C\]with \[{\sin ^3}\left( {\pi - \left( {B + C} \right)} \right)\], \[{\sin ^3}\left( {\pi - \left( {A + C} \right)} \right)\], \[{\sin ^3}\left( {\pi - \left( {A + B} \right)} \right)\] respectively. But here we need convert only \[\sin A\], \[\sin B\], \[\sin C\]and the rest will be remains same.
Formula used:
Sine laws:
\[\dfrac{a}{{\sin A}} = \dfrac{b}{{b\sin B}} = \dfrac{c}{{\sin C}}\]
Trigonometry identities:
\[2\sin \left( {a + b} \right)\cos \left( {a - b} \right) = \sin 2a + \sin 2b\]
\[2\sin \left( {a + b} \right)\cos \left( {a - b} \right) = \sin 2a + \sin 2b\]
\[\sin 2\theta = 2\sin \theta \cos \theta \]
Supplementary angle of trigonometry
\[\sin \left( {\pi - \theta } \right) = \sin \theta \]
Complete step by step solution:
We know that, \[\dfrac{a}{{\sin A}} = \dfrac{b}{{b\sin B}} = \dfrac{c}{{\sin C}} = k\]
\[a = k\sin A\], \[b = k\sin B\], \[c = k\sin C\]
Putting \[a = k\sin A\], \[b = k\sin B\], \[c = k\sin C\], in the expression \[{a^3}\cos \left( {B - C} \right) + {b^3}\cos \left( {C - A} \right) + {c^3}\cos \left( {A - B} \right)\]:
\[{\left( {k\sin A} \right)^3}\cos \left( {B - C} \right) + {\left( {k\sin B} \right)^3}\cos \left( {C - A} \right) + {\left( {k\sin C} \right)^3}\cos \left( {A - B} \right)\]
\[ = {k^3}{\sin ^3}A\cos \left( {B - C} \right) + {k^3}{\sin ^3}B\cos \left( {C - A} \right) + {k^3}{\sin ^3}C\cos \left( {A - B} \right)\]
\[ = {k^3}{\sin ^3}A\cos \left( {B - C} \right) + {k^3}{\sin ^3}B\cos \left( {C - A} \right) + {k^3}{\sin ^3}C\cos \left( {A - B} \right)\]
We know that, the sum of angles of a triangle is \[\pi \].
Thus, \[A + B + C = \pi \].
\[\begin{array}{l} = {k^3}{\sin ^2}A\sin \left[ {\pi - \left( {B + C} \right)} \right]\cos \left( {B - C} \right) + {k^3}{\sin ^2}B\sin \left[ {\pi - \left( {A + C} \right)} \right]\cos \left( {C - A} \right)\\ + {k^3}{\sin ^2}C\sin \left[ {\pi - \left( {A + B} \right)} \right]\cos \left( {A - B} \right)\end{array}\]
Applying supplementary angle of triangle:
\[ = {k^3}{\sin ^2}A\sin \left( {B + C} \right)\cos \left( {B - C} \right) + {k^3}{\sin ^2}B\sin \left( {A + C} \right)\cos \left( {C - A} \right) + {k^3}{\sin ^2}C\sin \left( {A + B} \right)\cos \left( {A - B} \right)\]
Applying the formula \[2\sin \left( {a + b} \right)\cos \left( {a - b} \right) = \sin 2a + \sin 2b\]
\[ = \dfrac{{{k^3}}}{2}\left[ {{{\sin }^2}A \cdot 2\sin \left( {B + C} \right)\cos \left( {B - C} \right) + {{\sin }^2}B \cdot 2\sin \left( {A + C} \right)\cos \left( {C - A} \right) + {{\sin }^2}C \cdot 2\sin \left( {A + B} \right)\cos \left( {A - B} \right)} \right]\]\[ = \dfrac{{{k^3}}}{2}\left[ {{{\sin }^2}A\left( {\sin 2B + \sin 2C} \right) + {{\sin }^2}B\left( {\sin 2A + \sin 2C} \right) + {{\sin }^2}C\left( {\sin 2A + \sin 2B} \right)} \right]\]
Now applying \[\sin 2\theta = 2\sin \theta \cos \theta \]
\[ = \dfrac{{{k^3}}}{2}\left[ \begin{array}{l}\left( {{{\sin }^2}A \cdot 2\sin B\cos B + {{\sin }^2}A \cdot 2\sin C\cos C} \right) + \left( {{{\sin }^2}B \cdot 2\sin A\cos A + {{\sin }^2}B \cdot 2\sin C\cos C} \right)\\ + \left( {{{\sin }^2}C \cdot 2\sin A\cos A + {{\sin }^2}C \cdot 2\sin B\cos B} \right)\end{array} \right]\]
\[ = \dfrac{{{k^3}}}{2} \cdot 2\left[ \begin{array}{l}{\sin ^2}A\sin B\cos B + {\sin ^2}A\sin C\cos C + {\sin ^2}B\sin A\cos A + {\sin ^2}B\sin C\cos C\\ + {\sin ^2}C\sin A\cos A + {\sin ^2}C\sin B\cos B\end{array} \right]\]
\[ = {k^3}\left[ \begin{array}{l}\left( {{{\sin }^2}A\sin B\cos B + {{\sin }^2}B\sin A\cos A} \right) + \left( {{{\sin }^2}A\sin C\cos C + {{\sin }^2}C\sin A\cos A} \right)\\ + \left( {{{\sin }^2}B\sin C\cos C + {{\sin }^2}C\sin B\cos B} \right)\end{array} \right]\]
\[ = {k^3}\left[ \begin{array}{l}\sin A\sin B\left( {\sin A\cos B + \sin B\cos A} \right) + \sin A\sin C\left( {\sin A\cos C + \sin C\cos A} \right)\\ + \sin B\sin C\left( {\sin B\cos C + \sin C\cos B} \right)\end{array} \right]\]
Applying \[\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B\]
\[ = {k^3}\left[ {\sin A\sin B\sin \left( {A + B} \right) + \sin A\sin C\sin \left( {A + C} \right) + \sin B\sin C\sin \left( {B + C} \right)} \right]\]
We know that, \[A + B + C = \pi \]
\[ = {k^3}\left[ {\sin A\sin B\sin \left( {\pi - C} \right) + \sin A\sin C\sin \left( {\pi - B} \right) + \sin B\sin C\sin \left( {\pi - A} \right)} \right]\]
Now applying supplementary angle \[\sin \left( {\pi - \theta } \right) = \sin \theta \]
\[ = {k^3}\left[ {\sin A\sin B\sin C + \sin A\sin C\sin B + \sin B\sin C\sin A} \right]\]
\[ = k\sin A \cdot k\sin B \cdot k\sin C + k\sin A \cdot k\sin C \cdot k\sin B + k\sin B \cdot k\sin C \cdot k\sin A\]
Putting \[a = k\sin A\], \[b = k\sin B\], \[c = k\sin C\]
\[ = abc + abc + abc\]
\[ = 3abc\]
Hence option B is the correct option.
Note: Students often do a common mistake when they put \[a = k\sin A\], \[b = k\sin B\], \[c = k\sin C\] in the given expression. They replace \[{\sin ^3}A\], \[{\sin ^3}B\], \[{\sin ^3}C\]with \[{\sin ^3}\left( {\pi - \left( {B + C} \right)} \right)\], \[{\sin ^3}\left( {\pi - \left( {A + C} \right)} \right)\], \[{\sin ^3}\left( {\pi - \left( {A + B} \right)} \right)\] respectively. But here we need convert only \[\sin A\], \[\sin B\], \[\sin C\]and the rest will be remains same.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

