
In a triangle ABC, then find \[{a^3}\cos \left( {B - C} \right) + {b^3}\cos \left( {C - A} \right) + {c^3}\cos \left( {A - B} \right)\].
A. abc
B. 3abc
c. a + b + c
D. None of these
Answer
162.9k+ views
Hint: First we will use the sine rule to find the value of a, b, and c. Then substitute the value of a, b, and c in the given expression. Then we will apply trigonometry identities to simplify the given expression.
Formula used:
Sine laws:
\[\dfrac{a}{{\sin A}} = \dfrac{b}{{b\sin B}} = \dfrac{c}{{\sin C}}\]
Trigonometry identities:
\[2\sin \left( {a + b} \right)\cos \left( {a - b} \right) = \sin 2a + \sin 2b\]
\[2\sin \left( {a + b} \right)\cos \left( {a - b} \right) = \sin 2a + \sin 2b\]
\[\sin 2\theta = 2\sin \theta \cos \theta \]
Supplementary angle of trigonometry
\[\sin \left( {\pi - \theta } \right) = \sin \theta \]
Complete step by step solution:
We know that, \[\dfrac{a}{{\sin A}} = \dfrac{b}{{b\sin B}} = \dfrac{c}{{\sin C}} = k\]
\[a = k\sin A\], \[b = k\sin B\], \[c = k\sin C\]
Putting \[a = k\sin A\], \[b = k\sin B\], \[c = k\sin C\], in the expression \[{a^3}\cos \left( {B - C} \right) + {b^3}\cos \left( {C - A} \right) + {c^3}\cos \left( {A - B} \right)\]:
\[{\left( {k\sin A} \right)^3}\cos \left( {B - C} \right) + {\left( {k\sin B} \right)^3}\cos \left( {C - A} \right) + {\left( {k\sin C} \right)^3}\cos \left( {A - B} \right)\]
\[ = {k^3}{\sin ^3}A\cos \left( {B - C} \right) + {k^3}{\sin ^3}B\cos \left( {C - A} \right) + {k^3}{\sin ^3}C\cos \left( {A - B} \right)\]
\[ = {k^3}{\sin ^3}A\cos \left( {B - C} \right) + {k^3}{\sin ^3}B\cos \left( {C - A} \right) + {k^3}{\sin ^3}C\cos \left( {A - B} \right)\]
We know that, the sum of angles of a triangle is \[\pi \].
Thus, \[A + B + C = \pi \].
\[\begin{array}{l} = {k^3}{\sin ^2}A\sin \left[ {\pi - \left( {B + C} \right)} \right]\cos \left( {B - C} \right) + {k^3}{\sin ^2}B\sin \left[ {\pi - \left( {A + C} \right)} \right]\cos \left( {C - A} \right)\\ + {k^3}{\sin ^2}C\sin \left[ {\pi - \left( {A + B} \right)} \right]\cos \left( {A - B} \right)\end{array}\]
Applying supplementary angle of triangle:
\[ = {k^3}{\sin ^2}A\sin \left( {B + C} \right)\cos \left( {B - C} \right) + {k^3}{\sin ^2}B\sin \left( {A + C} \right)\cos \left( {C - A} \right) + {k^3}{\sin ^2}C\sin \left( {A + B} \right)\cos \left( {A - B} \right)\]
Applying the formula \[2\sin \left( {a + b} \right)\cos \left( {a - b} \right) = \sin 2a + \sin 2b\]
\[ = \dfrac{{{k^3}}}{2}\left[ {{{\sin }^2}A \cdot 2\sin \left( {B + C} \right)\cos \left( {B - C} \right) + {{\sin }^2}B \cdot 2\sin \left( {A + C} \right)\cos \left( {C - A} \right) + {{\sin }^2}C \cdot 2\sin \left( {A + B} \right)\cos \left( {A - B} \right)} \right]\]\[ = \dfrac{{{k^3}}}{2}\left[ {{{\sin }^2}A\left( {\sin 2B + \sin 2C} \right) + {{\sin }^2}B\left( {\sin 2A + \sin 2C} \right) + {{\sin }^2}C\left( {\sin 2A + \sin 2B} \right)} \right]\]
Now applying \[\sin 2\theta = 2\sin \theta \cos \theta \]
\[ = \dfrac{{{k^3}}}{2}\left[ \begin{array}{l}\left( {{{\sin }^2}A \cdot 2\sin B\cos B + {{\sin }^2}A \cdot 2\sin C\cos C} \right) + \left( {{{\sin }^2}B \cdot 2\sin A\cos A + {{\sin }^2}B \cdot 2\sin C\cos C} \right)\\ + \left( {{{\sin }^2}C \cdot 2\sin A\cos A + {{\sin }^2}C \cdot 2\sin B\cos B} \right)\end{array} \right]\]
\[ = \dfrac{{{k^3}}}{2} \cdot 2\left[ \begin{array}{l}{\sin ^2}A\sin B\cos B + {\sin ^2}A\sin C\cos C + {\sin ^2}B\sin A\cos A + {\sin ^2}B\sin C\cos C\\ + {\sin ^2}C\sin A\cos A + {\sin ^2}C\sin B\cos B\end{array} \right]\]
\[ = {k^3}\left[ \begin{array}{l}\left( {{{\sin }^2}A\sin B\cos B + {{\sin }^2}B\sin A\cos A} \right) + \left( {{{\sin }^2}A\sin C\cos C + {{\sin }^2}C\sin A\cos A} \right)\\ + \left( {{{\sin }^2}B\sin C\cos C + {{\sin }^2}C\sin B\cos B} \right)\end{array} \right]\]
\[ = {k^3}\left[ \begin{array}{l}\sin A\sin B\left( {\sin A\cos B + \sin B\cos A} \right) + \sin A\sin C\left( {\sin A\cos C + \sin C\cos A} \right)\\ + \sin B\sin C\left( {\sin B\cos C + \sin C\cos B} \right)\end{array} \right]\]
Applying \[\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B\]
\[ = {k^3}\left[ {\sin A\sin B\sin \left( {A + B} \right) + \sin A\sin C\sin \left( {A + C} \right) + \sin B\sin C\sin \left( {B + C} \right)} \right]\]
We know that, \[A + B + C = \pi \]
\[ = {k^3}\left[ {\sin A\sin B\sin \left( {\pi - C} \right) + \sin A\sin C\sin \left( {\pi - B} \right) + \sin B\sin C\sin \left( {\pi - A} \right)} \right]\]
Now applying supplementary angle \[\sin \left( {\pi - \theta } \right) = \sin \theta \]
\[ = {k^3}\left[ {\sin A\sin B\sin C + \sin A\sin C\sin B + \sin B\sin C\sin A} \right]\]
\[ = k\sin A \cdot k\sin B \cdot k\sin C + k\sin A \cdot k\sin C \cdot k\sin B + k\sin B \cdot k\sin C \cdot k\sin A\]
Putting \[a = k\sin A\], \[b = k\sin B\], \[c = k\sin C\]
\[ = abc + abc + abc\]
\[ = 3abc\]
Hence option B is the correct option.
Note: Students often do a common mistake when they put \[a = k\sin A\], \[b = k\sin B\], \[c = k\sin C\] in the given expression. They replace \[{\sin ^3}A\], \[{\sin ^3}B\], \[{\sin ^3}C\]with \[{\sin ^3}\left( {\pi - \left( {B + C} \right)} \right)\], \[{\sin ^3}\left( {\pi - \left( {A + C} \right)} \right)\], \[{\sin ^3}\left( {\pi - \left( {A + B} \right)} \right)\] respectively. But here we need convert only \[\sin A\], \[\sin B\], \[\sin C\]and the rest will be remains same.
Formula used:
Sine laws:
\[\dfrac{a}{{\sin A}} = \dfrac{b}{{b\sin B}} = \dfrac{c}{{\sin C}}\]
Trigonometry identities:
\[2\sin \left( {a + b} \right)\cos \left( {a - b} \right) = \sin 2a + \sin 2b\]
\[2\sin \left( {a + b} \right)\cos \left( {a - b} \right) = \sin 2a + \sin 2b\]
\[\sin 2\theta = 2\sin \theta \cos \theta \]
Supplementary angle of trigonometry
\[\sin \left( {\pi - \theta } \right) = \sin \theta \]
Complete step by step solution:
We know that, \[\dfrac{a}{{\sin A}} = \dfrac{b}{{b\sin B}} = \dfrac{c}{{\sin C}} = k\]
\[a = k\sin A\], \[b = k\sin B\], \[c = k\sin C\]
Putting \[a = k\sin A\], \[b = k\sin B\], \[c = k\sin C\], in the expression \[{a^3}\cos \left( {B - C} \right) + {b^3}\cos \left( {C - A} \right) + {c^3}\cos \left( {A - B} \right)\]:
\[{\left( {k\sin A} \right)^3}\cos \left( {B - C} \right) + {\left( {k\sin B} \right)^3}\cos \left( {C - A} \right) + {\left( {k\sin C} \right)^3}\cos \left( {A - B} \right)\]
\[ = {k^3}{\sin ^3}A\cos \left( {B - C} \right) + {k^3}{\sin ^3}B\cos \left( {C - A} \right) + {k^3}{\sin ^3}C\cos \left( {A - B} \right)\]
\[ = {k^3}{\sin ^3}A\cos \left( {B - C} \right) + {k^3}{\sin ^3}B\cos \left( {C - A} \right) + {k^3}{\sin ^3}C\cos \left( {A - B} \right)\]
We know that, the sum of angles of a triangle is \[\pi \].
Thus, \[A + B + C = \pi \].
\[\begin{array}{l} = {k^3}{\sin ^2}A\sin \left[ {\pi - \left( {B + C} \right)} \right]\cos \left( {B - C} \right) + {k^3}{\sin ^2}B\sin \left[ {\pi - \left( {A + C} \right)} \right]\cos \left( {C - A} \right)\\ + {k^3}{\sin ^2}C\sin \left[ {\pi - \left( {A + B} \right)} \right]\cos \left( {A - B} \right)\end{array}\]
Applying supplementary angle of triangle:
\[ = {k^3}{\sin ^2}A\sin \left( {B + C} \right)\cos \left( {B - C} \right) + {k^3}{\sin ^2}B\sin \left( {A + C} \right)\cos \left( {C - A} \right) + {k^3}{\sin ^2}C\sin \left( {A + B} \right)\cos \left( {A - B} \right)\]
Applying the formula \[2\sin \left( {a + b} \right)\cos \left( {a - b} \right) = \sin 2a + \sin 2b\]
\[ = \dfrac{{{k^3}}}{2}\left[ {{{\sin }^2}A \cdot 2\sin \left( {B + C} \right)\cos \left( {B - C} \right) + {{\sin }^2}B \cdot 2\sin \left( {A + C} \right)\cos \left( {C - A} \right) + {{\sin }^2}C \cdot 2\sin \left( {A + B} \right)\cos \left( {A - B} \right)} \right]\]\[ = \dfrac{{{k^3}}}{2}\left[ {{{\sin }^2}A\left( {\sin 2B + \sin 2C} \right) + {{\sin }^2}B\left( {\sin 2A + \sin 2C} \right) + {{\sin }^2}C\left( {\sin 2A + \sin 2B} \right)} \right]\]
Now applying \[\sin 2\theta = 2\sin \theta \cos \theta \]
\[ = \dfrac{{{k^3}}}{2}\left[ \begin{array}{l}\left( {{{\sin }^2}A \cdot 2\sin B\cos B + {{\sin }^2}A \cdot 2\sin C\cos C} \right) + \left( {{{\sin }^2}B \cdot 2\sin A\cos A + {{\sin }^2}B \cdot 2\sin C\cos C} \right)\\ + \left( {{{\sin }^2}C \cdot 2\sin A\cos A + {{\sin }^2}C \cdot 2\sin B\cos B} \right)\end{array} \right]\]
\[ = \dfrac{{{k^3}}}{2} \cdot 2\left[ \begin{array}{l}{\sin ^2}A\sin B\cos B + {\sin ^2}A\sin C\cos C + {\sin ^2}B\sin A\cos A + {\sin ^2}B\sin C\cos C\\ + {\sin ^2}C\sin A\cos A + {\sin ^2}C\sin B\cos B\end{array} \right]\]
\[ = {k^3}\left[ \begin{array}{l}\left( {{{\sin }^2}A\sin B\cos B + {{\sin }^2}B\sin A\cos A} \right) + \left( {{{\sin }^2}A\sin C\cos C + {{\sin }^2}C\sin A\cos A} \right)\\ + \left( {{{\sin }^2}B\sin C\cos C + {{\sin }^2}C\sin B\cos B} \right)\end{array} \right]\]
\[ = {k^3}\left[ \begin{array}{l}\sin A\sin B\left( {\sin A\cos B + \sin B\cos A} \right) + \sin A\sin C\left( {\sin A\cos C + \sin C\cos A} \right)\\ + \sin B\sin C\left( {\sin B\cos C + \sin C\cos B} \right)\end{array} \right]\]
Applying \[\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B\]
\[ = {k^3}\left[ {\sin A\sin B\sin \left( {A + B} \right) + \sin A\sin C\sin \left( {A + C} \right) + \sin B\sin C\sin \left( {B + C} \right)} \right]\]
We know that, \[A + B + C = \pi \]
\[ = {k^3}\left[ {\sin A\sin B\sin \left( {\pi - C} \right) + \sin A\sin C\sin \left( {\pi - B} \right) + \sin B\sin C\sin \left( {\pi - A} \right)} \right]\]
Now applying supplementary angle \[\sin \left( {\pi - \theta } \right) = \sin \theta \]
\[ = {k^3}\left[ {\sin A\sin B\sin C + \sin A\sin C\sin B + \sin B\sin C\sin A} \right]\]
\[ = k\sin A \cdot k\sin B \cdot k\sin C + k\sin A \cdot k\sin C \cdot k\sin B + k\sin B \cdot k\sin C \cdot k\sin A\]
Putting \[a = k\sin A\], \[b = k\sin B\], \[c = k\sin C\]
\[ = abc + abc + abc\]
\[ = 3abc\]
Hence option B is the correct option.
Note: Students often do a common mistake when they put \[a = k\sin A\], \[b = k\sin B\], \[c = k\sin C\] in the given expression. They replace \[{\sin ^3}A\], \[{\sin ^3}B\], \[{\sin ^3}C\]with \[{\sin ^3}\left( {\pi - \left( {B + C} \right)} \right)\], \[{\sin ^3}\left( {\pi - \left( {A + C} \right)} \right)\], \[{\sin ^3}\left( {\pi - \left( {A + B} \right)} \right)\] respectively. But here we need convert only \[\sin A\], \[\sin B\], \[\sin C\]and the rest will be remains same.
Recently Updated Pages
Fluid Pressure - Important Concepts and Tips for JEE

JEE Main 2023 (February 1st Shift 2) Physics Question Paper with Answer Key

Impulse Momentum Theorem Important Concepts and Tips for JEE

Graphical Methods of Vector Addition - Important Concepts for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

JEE Main 2023 (February 1st Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NEET 2025 – Every New Update You Need to Know
