
In a triangle ABC, then find \[{a^3}\cos \left( {B - C} \right) + {b^3}\cos \left( {C - A} \right) + {c^3}\cos \left( {A - B} \right)\].
A. abc
B. 3abc
c. a + b + c
D. None of these
Answer
232.8k+ views
Hint: First we will use the sine rule to find the value of a, b, and c. Then substitute the value of a, b, and c in the given expression. Then we will apply trigonometry identities to simplify the given expression.
Formula used:
Sine laws:
\[\dfrac{a}{{\sin A}} = \dfrac{b}{{b\sin B}} = \dfrac{c}{{\sin C}}\]
Trigonometry identities:
\[2\sin \left( {a + b} \right)\cos \left( {a - b} \right) = \sin 2a + \sin 2b\]
\[2\sin \left( {a + b} \right)\cos \left( {a - b} \right) = \sin 2a + \sin 2b\]
\[\sin 2\theta = 2\sin \theta \cos \theta \]
Supplementary angle of trigonometry
\[\sin \left( {\pi - \theta } \right) = \sin \theta \]
Complete step by step solution:
We know that, \[\dfrac{a}{{\sin A}} = \dfrac{b}{{b\sin B}} = \dfrac{c}{{\sin C}} = k\]
\[a = k\sin A\], \[b = k\sin B\], \[c = k\sin C\]
Putting \[a = k\sin A\], \[b = k\sin B\], \[c = k\sin C\], in the expression \[{a^3}\cos \left( {B - C} \right) + {b^3}\cos \left( {C - A} \right) + {c^3}\cos \left( {A - B} \right)\]:
\[{\left( {k\sin A} \right)^3}\cos \left( {B - C} \right) + {\left( {k\sin B} \right)^3}\cos \left( {C - A} \right) + {\left( {k\sin C} \right)^3}\cos \left( {A - B} \right)\]
\[ = {k^3}{\sin ^3}A\cos \left( {B - C} \right) + {k^3}{\sin ^3}B\cos \left( {C - A} \right) + {k^3}{\sin ^3}C\cos \left( {A - B} \right)\]
\[ = {k^3}{\sin ^3}A\cos \left( {B - C} \right) + {k^3}{\sin ^3}B\cos \left( {C - A} \right) + {k^3}{\sin ^3}C\cos \left( {A - B} \right)\]
We know that, the sum of angles of a triangle is \[\pi \].
Thus, \[A + B + C = \pi \].
\[\begin{array}{l} = {k^3}{\sin ^2}A\sin \left[ {\pi - \left( {B + C} \right)} \right]\cos \left( {B - C} \right) + {k^3}{\sin ^2}B\sin \left[ {\pi - \left( {A + C} \right)} \right]\cos \left( {C - A} \right)\\ + {k^3}{\sin ^2}C\sin \left[ {\pi - \left( {A + B} \right)} \right]\cos \left( {A - B} \right)\end{array}\]
Applying supplementary angle of triangle:
\[ = {k^3}{\sin ^2}A\sin \left( {B + C} \right)\cos \left( {B - C} \right) + {k^3}{\sin ^2}B\sin \left( {A + C} \right)\cos \left( {C - A} \right) + {k^3}{\sin ^2}C\sin \left( {A + B} \right)\cos \left( {A - B} \right)\]
Applying the formula \[2\sin \left( {a + b} \right)\cos \left( {a - b} \right) = \sin 2a + \sin 2b\]
\[ = \dfrac{{{k^3}}}{2}\left[ {{{\sin }^2}A \cdot 2\sin \left( {B + C} \right)\cos \left( {B - C} \right) + {{\sin }^2}B \cdot 2\sin \left( {A + C} \right)\cos \left( {C - A} \right) + {{\sin }^2}C \cdot 2\sin \left( {A + B} \right)\cos \left( {A - B} \right)} \right]\]\[ = \dfrac{{{k^3}}}{2}\left[ {{{\sin }^2}A\left( {\sin 2B + \sin 2C} \right) + {{\sin }^2}B\left( {\sin 2A + \sin 2C} \right) + {{\sin }^2}C\left( {\sin 2A + \sin 2B} \right)} \right]\]
Now applying \[\sin 2\theta = 2\sin \theta \cos \theta \]
\[ = \dfrac{{{k^3}}}{2}\left[ \begin{array}{l}\left( {{{\sin }^2}A \cdot 2\sin B\cos B + {{\sin }^2}A \cdot 2\sin C\cos C} \right) + \left( {{{\sin }^2}B \cdot 2\sin A\cos A + {{\sin }^2}B \cdot 2\sin C\cos C} \right)\\ + \left( {{{\sin }^2}C \cdot 2\sin A\cos A + {{\sin }^2}C \cdot 2\sin B\cos B} \right)\end{array} \right]\]
\[ = \dfrac{{{k^3}}}{2} \cdot 2\left[ \begin{array}{l}{\sin ^2}A\sin B\cos B + {\sin ^2}A\sin C\cos C + {\sin ^2}B\sin A\cos A + {\sin ^2}B\sin C\cos C\\ + {\sin ^2}C\sin A\cos A + {\sin ^2}C\sin B\cos B\end{array} \right]\]
\[ = {k^3}\left[ \begin{array}{l}\left( {{{\sin }^2}A\sin B\cos B + {{\sin }^2}B\sin A\cos A} \right) + \left( {{{\sin }^2}A\sin C\cos C + {{\sin }^2}C\sin A\cos A} \right)\\ + \left( {{{\sin }^2}B\sin C\cos C + {{\sin }^2}C\sin B\cos B} \right)\end{array} \right]\]
\[ = {k^3}\left[ \begin{array}{l}\sin A\sin B\left( {\sin A\cos B + \sin B\cos A} \right) + \sin A\sin C\left( {\sin A\cos C + \sin C\cos A} \right)\\ + \sin B\sin C\left( {\sin B\cos C + \sin C\cos B} \right)\end{array} \right]\]
Applying \[\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B\]
\[ = {k^3}\left[ {\sin A\sin B\sin \left( {A + B} \right) + \sin A\sin C\sin \left( {A + C} \right) + \sin B\sin C\sin \left( {B + C} \right)} \right]\]
We know that, \[A + B + C = \pi \]
\[ = {k^3}\left[ {\sin A\sin B\sin \left( {\pi - C} \right) + \sin A\sin C\sin \left( {\pi - B} \right) + \sin B\sin C\sin \left( {\pi - A} \right)} \right]\]
Now applying supplementary angle \[\sin \left( {\pi - \theta } \right) = \sin \theta \]
\[ = {k^3}\left[ {\sin A\sin B\sin C + \sin A\sin C\sin B + \sin B\sin C\sin A} \right]\]
\[ = k\sin A \cdot k\sin B \cdot k\sin C + k\sin A \cdot k\sin C \cdot k\sin B + k\sin B \cdot k\sin C \cdot k\sin A\]
Putting \[a = k\sin A\], \[b = k\sin B\], \[c = k\sin C\]
\[ = abc + abc + abc\]
\[ = 3abc\]
Hence option B is the correct option.
Note: Students often do a common mistake when they put \[a = k\sin A\], \[b = k\sin B\], \[c = k\sin C\] in the given expression. They replace \[{\sin ^3}A\], \[{\sin ^3}B\], \[{\sin ^3}C\]with \[{\sin ^3}\left( {\pi - \left( {B + C} \right)} \right)\], \[{\sin ^3}\left( {\pi - \left( {A + C} \right)} \right)\], \[{\sin ^3}\left( {\pi - \left( {A + B} \right)} \right)\] respectively. But here we need convert only \[\sin A\], \[\sin B\], \[\sin C\]and the rest will be remains same.
Formula used:
Sine laws:
\[\dfrac{a}{{\sin A}} = \dfrac{b}{{b\sin B}} = \dfrac{c}{{\sin C}}\]
Trigonometry identities:
\[2\sin \left( {a + b} \right)\cos \left( {a - b} \right) = \sin 2a + \sin 2b\]
\[2\sin \left( {a + b} \right)\cos \left( {a - b} \right) = \sin 2a + \sin 2b\]
\[\sin 2\theta = 2\sin \theta \cos \theta \]
Supplementary angle of trigonometry
\[\sin \left( {\pi - \theta } \right) = \sin \theta \]
Complete step by step solution:
We know that, \[\dfrac{a}{{\sin A}} = \dfrac{b}{{b\sin B}} = \dfrac{c}{{\sin C}} = k\]
\[a = k\sin A\], \[b = k\sin B\], \[c = k\sin C\]
Putting \[a = k\sin A\], \[b = k\sin B\], \[c = k\sin C\], in the expression \[{a^3}\cos \left( {B - C} \right) + {b^3}\cos \left( {C - A} \right) + {c^3}\cos \left( {A - B} \right)\]:
\[{\left( {k\sin A} \right)^3}\cos \left( {B - C} \right) + {\left( {k\sin B} \right)^3}\cos \left( {C - A} \right) + {\left( {k\sin C} \right)^3}\cos \left( {A - B} \right)\]
\[ = {k^3}{\sin ^3}A\cos \left( {B - C} \right) + {k^3}{\sin ^3}B\cos \left( {C - A} \right) + {k^3}{\sin ^3}C\cos \left( {A - B} \right)\]
\[ = {k^3}{\sin ^3}A\cos \left( {B - C} \right) + {k^3}{\sin ^3}B\cos \left( {C - A} \right) + {k^3}{\sin ^3}C\cos \left( {A - B} \right)\]
We know that, the sum of angles of a triangle is \[\pi \].
Thus, \[A + B + C = \pi \].
\[\begin{array}{l} = {k^3}{\sin ^2}A\sin \left[ {\pi - \left( {B + C} \right)} \right]\cos \left( {B - C} \right) + {k^3}{\sin ^2}B\sin \left[ {\pi - \left( {A + C} \right)} \right]\cos \left( {C - A} \right)\\ + {k^3}{\sin ^2}C\sin \left[ {\pi - \left( {A + B} \right)} \right]\cos \left( {A - B} \right)\end{array}\]
Applying supplementary angle of triangle:
\[ = {k^3}{\sin ^2}A\sin \left( {B + C} \right)\cos \left( {B - C} \right) + {k^3}{\sin ^2}B\sin \left( {A + C} \right)\cos \left( {C - A} \right) + {k^3}{\sin ^2}C\sin \left( {A + B} \right)\cos \left( {A - B} \right)\]
Applying the formula \[2\sin \left( {a + b} \right)\cos \left( {a - b} \right) = \sin 2a + \sin 2b\]
\[ = \dfrac{{{k^3}}}{2}\left[ {{{\sin }^2}A \cdot 2\sin \left( {B + C} \right)\cos \left( {B - C} \right) + {{\sin }^2}B \cdot 2\sin \left( {A + C} \right)\cos \left( {C - A} \right) + {{\sin }^2}C \cdot 2\sin \left( {A + B} \right)\cos \left( {A - B} \right)} \right]\]\[ = \dfrac{{{k^3}}}{2}\left[ {{{\sin }^2}A\left( {\sin 2B + \sin 2C} \right) + {{\sin }^2}B\left( {\sin 2A + \sin 2C} \right) + {{\sin }^2}C\left( {\sin 2A + \sin 2B} \right)} \right]\]
Now applying \[\sin 2\theta = 2\sin \theta \cos \theta \]
\[ = \dfrac{{{k^3}}}{2}\left[ \begin{array}{l}\left( {{{\sin }^2}A \cdot 2\sin B\cos B + {{\sin }^2}A \cdot 2\sin C\cos C} \right) + \left( {{{\sin }^2}B \cdot 2\sin A\cos A + {{\sin }^2}B \cdot 2\sin C\cos C} \right)\\ + \left( {{{\sin }^2}C \cdot 2\sin A\cos A + {{\sin }^2}C \cdot 2\sin B\cos B} \right)\end{array} \right]\]
\[ = \dfrac{{{k^3}}}{2} \cdot 2\left[ \begin{array}{l}{\sin ^2}A\sin B\cos B + {\sin ^2}A\sin C\cos C + {\sin ^2}B\sin A\cos A + {\sin ^2}B\sin C\cos C\\ + {\sin ^2}C\sin A\cos A + {\sin ^2}C\sin B\cos B\end{array} \right]\]
\[ = {k^3}\left[ \begin{array}{l}\left( {{{\sin }^2}A\sin B\cos B + {{\sin }^2}B\sin A\cos A} \right) + \left( {{{\sin }^2}A\sin C\cos C + {{\sin }^2}C\sin A\cos A} \right)\\ + \left( {{{\sin }^2}B\sin C\cos C + {{\sin }^2}C\sin B\cos B} \right)\end{array} \right]\]
\[ = {k^3}\left[ \begin{array}{l}\sin A\sin B\left( {\sin A\cos B + \sin B\cos A} \right) + \sin A\sin C\left( {\sin A\cos C + \sin C\cos A} \right)\\ + \sin B\sin C\left( {\sin B\cos C + \sin C\cos B} \right)\end{array} \right]\]
Applying \[\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B\]
\[ = {k^3}\left[ {\sin A\sin B\sin \left( {A + B} \right) + \sin A\sin C\sin \left( {A + C} \right) + \sin B\sin C\sin \left( {B + C} \right)} \right]\]
We know that, \[A + B + C = \pi \]
\[ = {k^3}\left[ {\sin A\sin B\sin \left( {\pi - C} \right) + \sin A\sin C\sin \left( {\pi - B} \right) + \sin B\sin C\sin \left( {\pi - A} \right)} \right]\]
Now applying supplementary angle \[\sin \left( {\pi - \theta } \right) = \sin \theta \]
\[ = {k^3}\left[ {\sin A\sin B\sin C + \sin A\sin C\sin B + \sin B\sin C\sin A} \right]\]
\[ = k\sin A \cdot k\sin B \cdot k\sin C + k\sin A \cdot k\sin C \cdot k\sin B + k\sin B \cdot k\sin C \cdot k\sin A\]
Putting \[a = k\sin A\], \[b = k\sin B\], \[c = k\sin C\]
\[ = abc + abc + abc\]
\[ = 3abc\]
Hence option B is the correct option.
Note: Students often do a common mistake when they put \[a = k\sin A\], \[b = k\sin B\], \[c = k\sin C\] in the given expression. They replace \[{\sin ^3}A\], \[{\sin ^3}B\], \[{\sin ^3}C\]with \[{\sin ^3}\left( {\pi - \left( {B + C} \right)} \right)\], \[{\sin ^3}\left( {\pi - \left( {A + C} \right)} \right)\], \[{\sin ^3}\left( {\pi - \left( {A + B} \right)} \right)\] respectively. But here we need convert only \[\sin A\], \[\sin B\], \[\sin C\]and the rest will be remains same.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Electromagnetic Waves and Their Importance

Inductive Effect and Its Role in Acidic Strength

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Average and RMS Value in Electrical Circuits

Other Pages
Understanding Collisions: Types and Examples for Students

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

NCERT Solutions For Class 11 Maths Chapter 6 Permutations and Combinations (2025-26)

NCERT Solutions For Class 11 Maths Chapter 11 Introduction to Three Dimensional Geometry (2025-26)

Introduction to Three Dimensional Geometry Class 11 Maths Chapter 11 CBSE Notes - 2025-26

Chemistry Question Papers for JEE Main, NEET & Boards (PDFs)

