
In a tennis tournament, each of the six players play with every other player exactly once. How many matches are played during the tournament?
(a) 12
(b) 30
(c) 36
(d) 15
Answer
222.3k+ views
Hint: In order to find the solution of this question, we should know about the concept of the combination, that is whenever we have to choose a few out of some, then we have to apply the formula, that is, \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\] where r is the number of things we have to choose out of n and n is the total things.
Complete step-by-step answer:
In this question, we have been asked to find the number of matches that will be played by 6 players such that each player plays with every other for only once. To solve this question, we should know about the concept of the combination, that is, if we have to choose r out of n, then we can say that the possible number of combinations are, \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}.\]
Now, we know that at a time, only 2 players will play out of 6. So, we can say that the number of ways will be equal to the number of ways of choosing 2 out of 6. So, by the concept of combination, we can say, the total number of matches are \[^{6}{{C}_{2}}.\]
And by the formula of the combination, that is \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!},\] we can write the total number of matches as
\[^{6}{{C}_{2}}=\dfrac{6!}{2!\left( 6-2 \right)!}\]
Now, we will simplify it further. So, we get, the total number of matches as,
\[\Rightarrow \dfrac{6!}{2!4!}\]
\[\Rightarrow \dfrac{6\times 5}{2}\]
= 15
Hence, we can say 6 players will play 15 matches in total such that each player will play with every other player.
Therefore, we can say that option (d) is the right answer.
Note: While solving this question, one can think of making pairs by taking 2 players at a time but that will waste our time. We may miss a few cases which will give us a wrong answer and we may lose our marks. So, it is better to use the formula of combinations to solve the question.
Complete step-by-step answer:
In this question, we have been asked to find the number of matches that will be played by 6 players such that each player plays with every other for only once. To solve this question, we should know about the concept of the combination, that is, if we have to choose r out of n, then we can say that the possible number of combinations are, \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}.\]
Now, we know that at a time, only 2 players will play out of 6. So, we can say that the number of ways will be equal to the number of ways of choosing 2 out of 6. So, by the concept of combination, we can say, the total number of matches are \[^{6}{{C}_{2}}.\]
And by the formula of the combination, that is \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!},\] we can write the total number of matches as
\[^{6}{{C}_{2}}=\dfrac{6!}{2!\left( 6-2 \right)!}\]
Now, we will simplify it further. So, we get, the total number of matches as,
\[\Rightarrow \dfrac{6!}{2!4!}\]
\[\Rightarrow \dfrac{6\times 5}{2}\]
= 15
Hence, we can say 6 players will play 15 matches in total such that each player will play with every other player.
Therefore, we can say that option (d) is the right answer.
Note: While solving this question, one can think of making pairs by taking 2 players at a time but that will waste our time. We may miss a few cases which will give us a wrong answer and we may lose our marks. So, it is better to use the formula of combinations to solve the question.
Recently Updated Pages
States of Matter Chapter For JEE Main Chemistry

Mutually Exclusive vs Independent Events: Key Differences Explained

Area vs Volume: Key Differences Explained for Students

Conduction Explained: Definition, Examples & Science for Students

Balancing of Redox Reactions - Important Concepts and Tips for JEE

Atomic Size - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

