
In a series LCR circuit connected to an ac source of variable frequency and voltage $v = {v_m}\sin \omega t$ , draw a plot showing the variation of current $(I)$ with angular frequency $(\omega )$ for two different values of resistance ${R_1}$ and ${R_2}$ $({R_1} > {R_2})$ , Write the condition under which the phenomenon of resonance occurs. For which value of the resistance out of the two curves a sharper resonance is produced? Define Q-factor of the circuit and give its significance.
Answer
148.8k+ views
Hint: In order to solve this question one should be aware of the concept of resonance and the conditions of resonance in an LCR circuit. The condition of the resonance depends on a particular frequency, also known as resonance frequency. When the frequency of the LCR is equal to the resonance frequency only then the condition of resonance is attained.
Complete step by step solution:
The condition for resonance in the LCR circuit is given by,
${\omega _o} = \dfrac{1}{{\sqrt {LC} }}$
Here, we can easily observe that the amplitude of the current is maximum at the resonance frequency ${\omega _o}$ . Since, ${i_m} = {V_m}IR$ at resonance, the amplitude of current for case ${R_2}$ is sharper to that for case ${R_1}$ . The quality factor or can be said as the Q-factor of a resonance LCR circuit is defined as the ratio of voltage drop across the capacitor to that of applied voltage.
It is given by,
$Q = \dfrac{1}{R}\sqrt {\dfrac{L}{C}} $
The Q-factor or Quality factor determines the sharpness of the resonance curve. If the resonance curve is less sharp, then the maximum current decreases and also the circuit is close to the resonance for a larger range $\Delta \omega $ of frequencies and the regulation of the circuit then will not be good. Therefore, the sharp resonance curve is better.
Note: Less sharp the resonance is better, as for less sharp resonance curve, less is the selectivity of the circuit while the Q-Factor will be higher, sharper is the resonance curve and lesser will be the loss in energy of the circuit.
Complete step by step solution:
The condition for resonance in the LCR circuit is given by,
${\omega _o} = \dfrac{1}{{\sqrt {LC} }}$
Here, we can easily observe that the amplitude of the current is maximum at the resonance frequency ${\omega _o}$ . Since, ${i_m} = {V_m}IR$ at resonance, the amplitude of current for case ${R_2}$ is sharper to that for case ${R_1}$ . The quality factor or can be said as the Q-factor of a resonance LCR circuit is defined as the ratio of voltage drop across the capacitor to that of applied voltage.
It is given by,
$Q = \dfrac{1}{R}\sqrt {\dfrac{L}{C}} $
The Q-factor or Quality factor determines the sharpness of the resonance curve. If the resonance curve is less sharp, then the maximum current decreases and also the circuit is close to the resonance for a larger range $\Delta \omega $ of frequencies and the regulation of the circuit then will not be good. Therefore, the sharp resonance curve is better.
Note: Less sharp the resonance is better, as for less sharp resonance curve, less is the selectivity of the circuit while the Q-Factor will be higher, sharper is the resonance curve and lesser will be the loss in energy of the circuit.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electrical Field of Charged Spherical Shell - JEE

Charging and Discharging of Capacitor

Ideal and Non-Ideal Solutions Raoult's Law - JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

The force of interaction of two dipoles if the two class 12 physics JEE_Main

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

The force between two short electric dipoles placed class 12 physics JEE_Main

A quarter cylinder of radius R and refractive index class 12 physics JEE_Main

The deBroglie wavelength of a bus moving speed v is class 12 physics JEE_Main

A proton accelerated by a potential difference of 500 class 12 physics JEE_Main

A 50HzAC current of crest value of 1A flows through class 12 physics JEE_Main
