
If ${{z}_{1}}$ and ${{z}_{2}}$ are two complex numbers, then
A. $\left| {{z}_{1}}+{{z}_{2}} \right|\ge \left| {{z}_{1}} \right|+\left| {{z}_{2}} \right|$
B. $\left| {{z}_{1}}-{{z}_{2}} \right|\ge \left| {{z}_{1}} \right|+\left| {{z}_{2}} \right|$
C. $\left| {{z}_{1}}-{{z}_{2}} \right|\le \left| {{z}_{1}} \right|-\left| {{z}_{2}} \right|$
D. $\left| {{z}_{1}}+{{z}_{2}} \right|\ge \left| {{z}_{1}} \right|-\left| {{z}_{2}} \right|$
Answer
232.5k+ views
Hint: In this question, we are to prove the given property of the complex numbers. For this, the basic operations are applied.
Formula used: The complex number $(x,y)$ is represented by $x+iy$.
If $z=x+iy\in C$, then $x$ is called the real part and $y$ is called the imaginary part of $z$. These are represented by $\operatorname{Re}(z)$ and $\operatorname{Im}(z)$ respectively.
$z=x+iy$ be a complex number such that $\left| z \right|=r$ and $\theta $ be the amplitude of $z$. So, $\cos \theta =\dfrac{x}{r},\sin \theta =\dfrac{b}{r}$
And we can write the magnitude as
$\begin{align}
& \left| z \right|=\left| x+iy \right| \\
& \Rightarrow r=\sqrt{{{x}^{2}}+{{y}^{2}}} \\
\end{align}$
Thus, we can write
$z=x+iy=r\cos \theta +ir\sin \theta =r(\cos \theta +i\sin \theta )$
This is said to be the mod amplitude form or the polar form of $z$.
Where $\cos \theta +i\sin \theta $ is denoted by $cis\theta $ and the Euler’s formula is $\cos \theta +i\sin \theta ={{e}^{i\theta }}$
Some of the basic properties of complex numbers are:
$\operatorname{Re}(z)\le \left| z \right|,\operatorname{Im}(z)\le \left| z \right|$
$\begin{align}
& \overline{{{z}_{1}}+{{z}_{2}}}=\overline{{{z}_{1}}}+\overline{{{z}_{2}}} \\
& \overline{{{z}_{1}}-{{z}_{2}}}=\overline{{{z}_{1}}}-\overline{{{z}_{2}}} \\
& \overline{{{z}_{1}}{{z}_{2}}}=\overline{{{z}_{1}}}\overline{{{z}_{2}}} \\
& \left( \overline{{}^{{{z}_{1}}}/{}_{{{z}_{2}}}} \right)={}^{\overline{{{z}_{1}}}}/{}_{\overline{{{z}_{2}}}};{{z}_{2}}\ne 0 \\
\end{align}$
Complete step by step solution: Given that, ${{z}_{1}}$ and ${{z}_{2}}$ are two complex numbers.
Consider $\left| {{z}_{1}} \right|>\left| {{z}_{2}} \right|$
Then, we can write
\[\left| {{z}_{1}} \right|=\left| ({{z}_{1}}+{{z}_{2}})-{{z}_{2}} \right|\text{ }...(1)\]
But we know that,
$\left| {{z}_{1}}-{{z}_{2}} \right|\le \left| {{z}_{1}} \right|+\left| {{z}_{2}} \right|$
Then, on applying the above property in (1), we get
\[\begin{align}
& \left| {{z}_{1}} \right|=\left| ({{z}_{1}}+{{z}_{2}})-{{z}_{2}} \right|\le \left| {{z}_{1}}+{{z}_{2}} \right|+\left| -{{z}_{2}} \right| \\
& \Rightarrow \left| {{z}_{1}} \right|\le \left| {{z}_{1}}+{{z}_{2}} \right|+\left| {{z}_{2}} \right| \\
& \Rightarrow \left| {{z}_{1}} \right|-\left| {{z}_{2}} \right|\le \left| {{z}_{1}}+{{z}_{2}} \right| \\
& \Rightarrow \left| {{z}_{1}}+{{z}_{2}} \right|\ge \left| {{z}_{1}} \right|-\left| {{z}_{2}} \right|\text{ }...(2) \\
\end{align}\]
If $\left| {{z}_{2}} \right|>\left| {{z}_{1}} \right|$
Then, we can write
\[\left| {{z}_{2}} \right|=\left| ({{z}_{1}}+{{z}_{2}})-{{z}_{1}} \right|\text{ }...(3)\]
But we know that,
$\left| {{z}_{1}}-{{z}_{2}} \right|\le \left| {{z}_{1}} \right|+\left| {{z}_{2}} \right|$
Then, on applying the above property in (1), we get
\[\begin{align}
& \left| {{z}_{2}} \right|=\left| ({{z}_{1}}+{{z}_{2}})-{{z}_{1}} \right|\le \left| {{z}_{1}}+{{z}_{2}} \right|+\left| -{{z}_{1}} \right| \\
& \Rightarrow \left| {{z}_{2}} \right|\le \left| {{z}_{1}}+{{z}_{2}} \right|+\left| {{z}_{1}} \right| \\
& \Rightarrow \left| {{z}_{2}} \right|-\left| {{z}_{1}} \right|\le \left| {{z}_{1}}+{{z}_{2}} \right| \\
& \Rightarrow \left| {{z}_{1}}+{{z}_{2}} \right|\ge \left| {{z}_{2}} \right|-\left| {{z}_{1}} \right|\text{ }...(4) \\
\end{align}\]
Thus, from (3) and (4), we get
$\left| {{z}_{1}}+{{z}_{2}} \right|\ge \left| \left| {{z}_{1}} \right|-\left| {{z}_{2}} \right| \right|$
Thus, Option (D) is correct.
Note: Here we need to apply the properties of complex numbers, to find the given expression. By applying appropriate formulae, the required value is obtained.
Formula used: The complex number $(x,y)$ is represented by $x+iy$.
If $z=x+iy\in C$, then $x$ is called the real part and $y$ is called the imaginary part of $z$. These are represented by $\operatorname{Re}(z)$ and $\operatorname{Im}(z)$ respectively.
$z=x+iy$ be a complex number such that $\left| z \right|=r$ and $\theta $ be the amplitude of $z$. So, $\cos \theta =\dfrac{x}{r},\sin \theta =\dfrac{b}{r}$
And we can write the magnitude as
$\begin{align}
& \left| z \right|=\left| x+iy \right| \\
& \Rightarrow r=\sqrt{{{x}^{2}}+{{y}^{2}}} \\
\end{align}$
Thus, we can write
$z=x+iy=r\cos \theta +ir\sin \theta =r(\cos \theta +i\sin \theta )$
This is said to be the mod amplitude form or the polar form of $z$.
Where $\cos \theta +i\sin \theta $ is denoted by $cis\theta $ and the Euler’s formula is $\cos \theta +i\sin \theta ={{e}^{i\theta }}$
Some of the basic properties of complex numbers are:
$\operatorname{Re}(z)\le \left| z \right|,\operatorname{Im}(z)\le \left| z \right|$
$\begin{align}
& \overline{{{z}_{1}}+{{z}_{2}}}=\overline{{{z}_{1}}}+\overline{{{z}_{2}}} \\
& \overline{{{z}_{1}}-{{z}_{2}}}=\overline{{{z}_{1}}}-\overline{{{z}_{2}}} \\
& \overline{{{z}_{1}}{{z}_{2}}}=\overline{{{z}_{1}}}\overline{{{z}_{2}}} \\
& \left( \overline{{}^{{{z}_{1}}}/{}_{{{z}_{2}}}} \right)={}^{\overline{{{z}_{1}}}}/{}_{\overline{{{z}_{2}}}};{{z}_{2}}\ne 0 \\
\end{align}$
Complete step by step solution: Given that, ${{z}_{1}}$ and ${{z}_{2}}$ are two complex numbers.
Consider $\left| {{z}_{1}} \right|>\left| {{z}_{2}} \right|$
Then, we can write
\[\left| {{z}_{1}} \right|=\left| ({{z}_{1}}+{{z}_{2}})-{{z}_{2}} \right|\text{ }...(1)\]
But we know that,
$\left| {{z}_{1}}-{{z}_{2}} \right|\le \left| {{z}_{1}} \right|+\left| {{z}_{2}} \right|$
Then, on applying the above property in (1), we get
\[\begin{align}
& \left| {{z}_{1}} \right|=\left| ({{z}_{1}}+{{z}_{2}})-{{z}_{2}} \right|\le \left| {{z}_{1}}+{{z}_{2}} \right|+\left| -{{z}_{2}} \right| \\
& \Rightarrow \left| {{z}_{1}} \right|\le \left| {{z}_{1}}+{{z}_{2}} \right|+\left| {{z}_{2}} \right| \\
& \Rightarrow \left| {{z}_{1}} \right|-\left| {{z}_{2}} \right|\le \left| {{z}_{1}}+{{z}_{2}} \right| \\
& \Rightarrow \left| {{z}_{1}}+{{z}_{2}} \right|\ge \left| {{z}_{1}} \right|-\left| {{z}_{2}} \right|\text{ }...(2) \\
\end{align}\]
If $\left| {{z}_{2}} \right|>\left| {{z}_{1}} \right|$
Then, we can write
\[\left| {{z}_{2}} \right|=\left| ({{z}_{1}}+{{z}_{2}})-{{z}_{1}} \right|\text{ }...(3)\]
But we know that,
$\left| {{z}_{1}}-{{z}_{2}} \right|\le \left| {{z}_{1}} \right|+\left| {{z}_{2}} \right|$
Then, on applying the above property in (1), we get
\[\begin{align}
& \left| {{z}_{2}} \right|=\left| ({{z}_{1}}+{{z}_{2}})-{{z}_{1}} \right|\le \left| {{z}_{1}}+{{z}_{2}} \right|+\left| -{{z}_{1}} \right| \\
& \Rightarrow \left| {{z}_{2}} \right|\le \left| {{z}_{1}}+{{z}_{2}} \right|+\left| {{z}_{1}} \right| \\
& \Rightarrow \left| {{z}_{2}} \right|-\left| {{z}_{1}} \right|\le \left| {{z}_{1}}+{{z}_{2}} \right| \\
& \Rightarrow \left| {{z}_{1}}+{{z}_{2}} \right|\ge \left| {{z}_{2}} \right|-\left| {{z}_{1}} \right|\text{ }...(4) \\
\end{align}\]
Thus, from (3) and (4), we get
$\left| {{z}_{1}}+{{z}_{2}} \right|\ge \left| \left| {{z}_{1}} \right|-\left| {{z}_{2}} \right| \right|$
Thus, Option (D) is correct.
Note: Here we need to apply the properties of complex numbers, to find the given expression. By applying appropriate formulae, the required value is obtained.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

