
If \[z = r{e^{i\theta }}\] , then what is the value of \[\left| {{e^{iz}}} \right|\]?
A. \[{e^{r sin\theta }}\]
B. \[{e^{ - r sin\theta }}\]
C. \[{e^{ - r cos\theta }}\]
D. \[{e^{r cos\theta }}\]
Answer
161.1k+ views
Hint: First, convert the complex number into the polar form. Then multiply the polar form of complex number by the imaginary number \[i\] and simplify the complex number. In the end, take the modulus of the complex number to get the required answer.
Formula used :
The polar form of a complex number \[z = a + ib\] is \[z = r\left( {cos\theta + isin\theta } \right)\], where \[r = \sqrt {{a^2} + {b^2}} \].
\[{e^{i\theta }} = \left( {cos\theta + isin\theta } \right)\]
\[\left| {{e^{ix}}} \right| = 1\] for all \[x \in R\].
\[{a^{\left( {m + n} \right)}} = {a^m}{a^n}\]
Complete step by step solution:
The given exponential form of a complex number is \[z = r{e^{i\theta }}\].
Let’s convert the exponential form into the polar form of a complex number.
\[r{e^{i\theta }} = r\left( {cos \theta + i sin \theta } \right)\]
\[ \Rightarrow \]\[z = r\left( {cos \theta + i sin \theta } \right)\]
Now multiply both sides of the above equation by \[i\].
\[iz = ir\left( {cos \theta + i sin \theta } \right)\]
\[ \Rightarrow \]\[iz = r\left( {icos \theta + {i^2} sin \theta } \right)\]
\[ \Rightarrow \]\[iz = r\left( {icos \theta - sin \theta } \right)\] [ Since \[{i^2} = - 1\]]
\[ \Rightarrow \]\[iz = - rsin \theta + ircos \theta \]
Now take the exponential on both sides.
\[{e^{iz}} = {e^{ - rsin \theta + ircos \theta }}\]
Apply the exponent property \[{a^{\left( {m + n} \right)}} = {a^m}{a^n}\].
\[{e^{iz}} = {e^{ - rsin \theta }}{e^{ircos \theta }}\]
Take the modulus on both sides of the above equation.
\[\left| {{e^{iz}}} \right| = \left| {{e^{ - rsin \theta }} \times {e^{ircos \theta }}} \right|\]
\[ \Rightarrow \]\[\left| {{e^{iz}}} \right| = \left| {{e^{ - rsin \theta }}} \right| \times \left| {{e^{ircos \theta }}} \right|\]
\[ \Rightarrow \]\[\left| {{e^{iz}}} \right| = {e^{ - rsin \theta }} \times \left| {{e^{ircos \theta }}} \right|\]
Now apply the property \[\left| {{e^{ix}}} \right| = 1\] for all \[x \in R\] on right-hand side.
\[\left| {{e^{iz}}} \right| = {e^{ - rsin \theta }} \times 1\]
\[ \Rightarrow \]\[\left| {{e^{iz}}} \right| = {e^{ - rsin \theta }}\]
Hence the correct option is B.
Note: The different types of a complex number are:
Rectangular form: \[z = a + ib\]
Polar form: \[z = r\left( {cos\theta + isin\theta } \right)\], where \[r = \sqrt {{a^2} + {b^2}} \]
Exponential form: \[z = r{e^{i\theta }}\]
Formula used :
The polar form of a complex number \[z = a + ib\] is \[z = r\left( {cos\theta + isin\theta } \right)\], where \[r = \sqrt {{a^2} + {b^2}} \].
\[{e^{i\theta }} = \left( {cos\theta + isin\theta } \right)\]
\[\left| {{e^{ix}}} \right| = 1\] for all \[x \in R\].
\[{a^{\left( {m + n} \right)}} = {a^m}{a^n}\]
Complete step by step solution:
The given exponential form of a complex number is \[z = r{e^{i\theta }}\].
Let’s convert the exponential form into the polar form of a complex number.
\[r{e^{i\theta }} = r\left( {cos \theta + i sin \theta } \right)\]
\[ \Rightarrow \]\[z = r\left( {cos \theta + i sin \theta } \right)\]
Now multiply both sides of the above equation by \[i\].
\[iz = ir\left( {cos \theta + i sin \theta } \right)\]
\[ \Rightarrow \]\[iz = r\left( {icos \theta + {i^2} sin \theta } \right)\]
\[ \Rightarrow \]\[iz = r\left( {icos \theta - sin \theta } \right)\] [ Since \[{i^2} = - 1\]]
\[ \Rightarrow \]\[iz = - rsin \theta + ircos \theta \]
Now take the exponential on both sides.
\[{e^{iz}} = {e^{ - rsin \theta + ircos \theta }}\]
Apply the exponent property \[{a^{\left( {m + n} \right)}} = {a^m}{a^n}\].
\[{e^{iz}} = {e^{ - rsin \theta }}{e^{ircos \theta }}\]
Take the modulus on both sides of the above equation.
\[\left| {{e^{iz}}} \right| = \left| {{e^{ - rsin \theta }} \times {e^{ircos \theta }}} \right|\]
\[ \Rightarrow \]\[\left| {{e^{iz}}} \right| = \left| {{e^{ - rsin \theta }}} \right| \times \left| {{e^{ircos \theta }}} \right|\]
\[ \Rightarrow \]\[\left| {{e^{iz}}} \right| = {e^{ - rsin \theta }} \times \left| {{e^{ircos \theta }}} \right|\]
Now apply the property \[\left| {{e^{ix}}} \right| = 1\] for all \[x \in R\] on right-hand side.
\[\left| {{e^{iz}}} \right| = {e^{ - rsin \theta }} \times 1\]
\[ \Rightarrow \]\[\left| {{e^{iz}}} \right| = {e^{ - rsin \theta }}\]
Hence the correct option is B.
Note: The different types of a complex number are:
Rectangular form: \[z = a + ib\]
Polar form: \[z = r\left( {cos\theta + isin\theta } \right)\], where \[r = \sqrt {{a^2} + {b^2}} \]
Exponential form: \[z = r{e^{i\theta }}\]
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations
