
If \[z = r{e^{i\theta }}\] , then what is the value of \[\left| {{e^{iz}}} \right|\]?
A. \[{e^{r sin\theta }}\]
B. \[{e^{ - r sin\theta }}\]
C. \[{e^{ - r cos\theta }}\]
D. \[{e^{r cos\theta }}\]
Answer
214.5k+ views
Hint: First, convert the complex number into the polar form. Then multiply the polar form of complex number by the imaginary number \[i\] and simplify the complex number. In the end, take the modulus of the complex number to get the required answer.
Formula used :
The polar form of a complex number \[z = a + ib\] is \[z = r\left( {cos\theta + isin\theta } \right)\], where \[r = \sqrt {{a^2} + {b^2}} \].
\[{e^{i\theta }} = \left( {cos\theta + isin\theta } \right)\]
\[\left| {{e^{ix}}} \right| = 1\] for all \[x \in R\].
\[{a^{\left( {m + n} \right)}} = {a^m}{a^n}\]
Complete step by step solution:
The given exponential form of a complex number is \[z = r{e^{i\theta }}\].
Let’s convert the exponential form into the polar form of a complex number.
\[r{e^{i\theta }} = r\left( {cos \theta + i sin \theta } \right)\]
\[ \Rightarrow \]\[z = r\left( {cos \theta + i sin \theta } \right)\]
Now multiply both sides of the above equation by \[i\].
\[iz = ir\left( {cos \theta + i sin \theta } \right)\]
\[ \Rightarrow \]\[iz = r\left( {icos \theta + {i^2} sin \theta } \right)\]
\[ \Rightarrow \]\[iz = r\left( {icos \theta - sin \theta } \right)\] [ Since \[{i^2} = - 1\]]
\[ \Rightarrow \]\[iz = - rsin \theta + ircos \theta \]
Now take the exponential on both sides.
\[{e^{iz}} = {e^{ - rsin \theta + ircos \theta }}\]
Apply the exponent property \[{a^{\left( {m + n} \right)}} = {a^m}{a^n}\].
\[{e^{iz}} = {e^{ - rsin \theta }}{e^{ircos \theta }}\]
Take the modulus on both sides of the above equation.
\[\left| {{e^{iz}}} \right| = \left| {{e^{ - rsin \theta }} \times {e^{ircos \theta }}} \right|\]
\[ \Rightarrow \]\[\left| {{e^{iz}}} \right| = \left| {{e^{ - rsin \theta }}} \right| \times \left| {{e^{ircos \theta }}} \right|\]
\[ \Rightarrow \]\[\left| {{e^{iz}}} \right| = {e^{ - rsin \theta }} \times \left| {{e^{ircos \theta }}} \right|\]
Now apply the property \[\left| {{e^{ix}}} \right| = 1\] for all \[x \in R\] on right-hand side.
\[\left| {{e^{iz}}} \right| = {e^{ - rsin \theta }} \times 1\]
\[ \Rightarrow \]\[\left| {{e^{iz}}} \right| = {e^{ - rsin \theta }}\]
Hence the correct option is B.
Note: The different types of a complex number are:
Rectangular form: \[z = a + ib\]
Polar form: \[z = r\left( {cos\theta + isin\theta } \right)\], where \[r = \sqrt {{a^2} + {b^2}} \]
Exponential form: \[z = r{e^{i\theta }}\]
Formula used :
The polar form of a complex number \[z = a + ib\] is \[z = r\left( {cos\theta + isin\theta } \right)\], where \[r = \sqrt {{a^2} + {b^2}} \].
\[{e^{i\theta }} = \left( {cos\theta + isin\theta } \right)\]
\[\left| {{e^{ix}}} \right| = 1\] for all \[x \in R\].
\[{a^{\left( {m + n} \right)}} = {a^m}{a^n}\]
Complete step by step solution:
The given exponential form of a complex number is \[z = r{e^{i\theta }}\].
Let’s convert the exponential form into the polar form of a complex number.
\[r{e^{i\theta }} = r\left( {cos \theta + i sin \theta } \right)\]
\[ \Rightarrow \]\[z = r\left( {cos \theta + i sin \theta } \right)\]
Now multiply both sides of the above equation by \[i\].
\[iz = ir\left( {cos \theta + i sin \theta } \right)\]
\[ \Rightarrow \]\[iz = r\left( {icos \theta + {i^2} sin \theta } \right)\]
\[ \Rightarrow \]\[iz = r\left( {icos \theta - sin \theta } \right)\] [ Since \[{i^2} = - 1\]]
\[ \Rightarrow \]\[iz = - rsin \theta + ircos \theta \]
Now take the exponential on both sides.
\[{e^{iz}} = {e^{ - rsin \theta + ircos \theta }}\]
Apply the exponent property \[{a^{\left( {m + n} \right)}} = {a^m}{a^n}\].
\[{e^{iz}} = {e^{ - rsin \theta }}{e^{ircos \theta }}\]
Take the modulus on both sides of the above equation.
\[\left| {{e^{iz}}} \right| = \left| {{e^{ - rsin \theta }} \times {e^{ircos \theta }}} \right|\]
\[ \Rightarrow \]\[\left| {{e^{iz}}} \right| = \left| {{e^{ - rsin \theta }}} \right| \times \left| {{e^{ircos \theta }}} \right|\]
\[ \Rightarrow \]\[\left| {{e^{iz}}} \right| = {e^{ - rsin \theta }} \times \left| {{e^{ircos \theta }}} \right|\]
Now apply the property \[\left| {{e^{ix}}} \right| = 1\] for all \[x \in R\] on right-hand side.
\[\left| {{e^{iz}}} \right| = {e^{ - rsin \theta }} \times 1\]
\[ \Rightarrow \]\[\left| {{e^{iz}}} \right| = {e^{ - rsin \theta }}\]
Hence the correct option is B.
Note: The different types of a complex number are:
Rectangular form: \[z = a + ib\]
Polar form: \[z = r\left( {cos\theta + isin\theta } \right)\], where \[r = \sqrt {{a^2} + {b^2}} \]
Exponential form: \[z = r{e^{i\theta }}\]
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Hybridisation in Chemistry – Concept, Types & Applications

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Collision: Meaning, Types & Examples in Physics

How to Convert a Galvanometer into an Ammeter or Voltmeter

