
If \[y=\dfrac{\sin x}{1+\dfrac{\cos }{1+\dfrac{\sin x}{1+\dfrac{\cos x}{1+\sin x........}}}}\], then find \[\dfrac{dy}{dx}\].
Answer
219.6k+ views
Hint: Simplify the denominator which is an infinite function and differentiate by applying product rule.
Here \[y\] is an infinite function. By observation, we can see the pattern that \[\sin x\] and \[\cos x\]appear alternatingly and hence, we can write \[y\] as
\[y=\dfrac{\sin x}{1+\dfrac{\cos x}{1+y}}\]
\[\Rightarrow y=\dfrac{\sin x}{\dfrac{1+y+\cos x}{1+y}}\]
\[\Rightarrow y=\dfrac{\sin x(1+y)}{1+y+\cos x}\]
\[\Rightarrow y(1+y+\cos x)=\sin x(1+y)\]
Differentiating both sides with respect to\[x\], we get,
\[(1+y+\cos x).\dfrac{dy}{dx}+y(1+\dfrac{dy}{dx}-\sin x)=(1+y)\cos x+\sin x(\dfrac{dy}{dx})\]
\[\Rightarrow (1+y+\cos x).\dfrac{dy}{dx}+y+y\dfrac{dy}{dx}-y\sin x=(1+y)\cos x+\sin x(\dfrac{dy}{dx})\]
Taking all the terms with \[\dfrac{dy}{dx}\]to one side and other terms to the other side, we get,
\[\Rightarrow (1+y+\cos x).\dfrac{dy}{dx}+y\dfrac{dy}{dx}-\sin x(\dfrac{dy}{dx})=(1+y)\cos x+y\sin x-y\]
\[\Rightarrow (1+y+\cos x-\sin x+y).\dfrac{dy}{dx}=(1+y)\cos x+y\sin x-y\]
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{y(cosx+\sin x-1)+\cos x}{1+2y+\cos x-\sin x}\]
Note: Generally students make a mistake of writing \[\dfrac{\sin x}{1+\dfrac{\cos }{1+\dfrac{sinx}{1+\cos x.....}}}\] as \[\dfrac{\sin x}{\dfrac{1+\cos x}{y}}\]which is wrong as the repetition starts after the addition of \[1\] in the denominator i.e. \[\dfrac{\sin x}{\dfrac{1+\cos x}{1+y}}\].
Here \[y\] is an infinite function. By observation, we can see the pattern that \[\sin x\] and \[\cos x\]appear alternatingly and hence, we can write \[y\] as
\[y=\dfrac{\sin x}{1+\dfrac{\cos x}{1+y}}\]
\[\Rightarrow y=\dfrac{\sin x}{\dfrac{1+y+\cos x}{1+y}}\]
\[\Rightarrow y=\dfrac{\sin x(1+y)}{1+y+\cos x}\]
\[\Rightarrow y(1+y+\cos x)=\sin x(1+y)\]
Differentiating both sides with respect to\[x\], we get,
\[(1+y+\cos x).\dfrac{dy}{dx}+y(1+\dfrac{dy}{dx}-\sin x)=(1+y)\cos x+\sin x(\dfrac{dy}{dx})\]
\[\Rightarrow (1+y+\cos x).\dfrac{dy}{dx}+y+y\dfrac{dy}{dx}-y\sin x=(1+y)\cos x+\sin x(\dfrac{dy}{dx})\]
Taking all the terms with \[\dfrac{dy}{dx}\]to one side and other terms to the other side, we get,
\[\Rightarrow (1+y+\cos x).\dfrac{dy}{dx}+y\dfrac{dy}{dx}-\sin x(\dfrac{dy}{dx})=(1+y)\cos x+y\sin x-y\]
\[\Rightarrow (1+y+\cos x-\sin x+y).\dfrac{dy}{dx}=(1+y)\cos x+y\sin x-y\]
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{y(cosx+\sin x-1)+\cos x}{1+2y+\cos x-\sin x}\]
Note: Generally students make a mistake of writing \[\dfrac{\sin x}{1+\dfrac{\cos }{1+\dfrac{sinx}{1+\cos x.....}}}\] as \[\dfrac{\sin x}{\dfrac{1+\cos x}{y}}\]which is wrong as the repetition starts after the addition of \[1\] in the denominator i.e. \[\dfrac{\sin x}{\dfrac{1+\cos x}{1+y}}\].
Recently Updated Pages
JEE Main 2022 (July 26th Shift 1) Physics Question Paper with Answer Key

Centre of Mass of Semicircular Ring Explained

JEE Main 2022 (June 26th Shift 2) Chemistry Question Paper with Answer Key

Apparent Frequency Explained: Formula, Uses & Examples

JEE Main 2023 (January 30th Shift 2) Chemistry Question Paper with Answer Key

Displacement Current and Maxwell’s Equations Explained

Trending doubts
Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Other Pages
Understanding Average and RMS Value in Electrical Circuits

NCERT Solutions for Class 11 Maths Chapter 6 Permutations And Combinations

NCERT Solutions For Class 11 Maths Chapter 11 Introduction To Three Dimensional Geometry - 2025-26

Understanding Entropy Changes in Different Processes

Common Ion Effect: Concept, Applications, and Problem-Solving

NCERT Solutions for Class 11 Maths Chapter 7 Binomial Theorem

