
If $y = y\left( x \right)$ is the solution of the differential equation $\dfrac{{5 + {e^x}}}{{2 + y}}\dfrac{{dy}}{{dx}} + {e^x} = 0$ satisfying $y\left( 0 \right) = 1$,then find the value of $y\left( {{{\log }_e}13} \right)$.
A. 1
B. 0
C. 2
D. -1
Answer
217.2k+ views
Hint: First we will rewrite the differential equation in the form $f\left( y \right)dy = g\left( x \right)dx$. Then by using the substitution method, solve the equation. Then use the initial value to calculate the value of the integrating constant. Put $x = {\log _e}13$in the solution of the differential equation to calculate $y\left( {{{\log }_e}13} \right)$.
Formula Used:
$\int {\dfrac{1}{x}dx} = \log x + c$
$\dfrac{d}{{dx}}\left( {{e^x}} \right) = {e^x}$
Complete step by step solution:
Given differential equation is $\dfrac{{5 + {e^x}}}{{2 + y}}\dfrac{{dy}}{{dx}} + {e^x} = 0$.
Subtract ${e^x}$ from both sides of the equation.
$ \Rightarrow \dfrac{{5 + {e^x}}}{{2 + y}}\dfrac{{dy}}{{dx}} + {e^x} - {e^x} = 0 - {e^x}$
$ \Rightarrow \dfrac{{5 + {e^x}}}{{2 + y}}\dfrac{{dy}}{{dx}} = - {e^x}$
Multiply $dx$ on both sides of the equation
$ \Rightarrow \dfrac{{\left( {5 + {e^x}} \right)}}{{\left( {2 + y} \right)}}dy = - {e^x}dx$
Divide both sides by $5 + {e^x}$.
$ \Rightarrow \dfrac{{dy}}{{\left( {2 + y} \right)}} = \dfrac{{ - {e^x}dx}}{{\left( {5 + {e^x}} \right)}}$
Take integration operations on both sides of the equation.
$ \Rightarrow \int {\dfrac{{dy}}{{\left( {2 + y} \right)}}} = \int {\dfrac{{ - {e^x}dx}}{{\left( {5 + {e^x}} \right)}}} $ …..(1)
Solve the integration $\int {\dfrac{{dy}}{{\left( {2 + y} \right)}}} $ by substitute method.
Let $2 + y = t$.
Differentiate both sides by $x$.
$ \Rightarrow dy = dt$
Substitute $2 + y = t$ and $dy = dt$ in $\int {\dfrac{{dy}}{{\left( {2 + y} \right)}}} $
$\int {\dfrac{{dy}}{{\left( {2 + y} \right)}}} $
$ = \int {\dfrac{{dt}}{t}} $
Apply the formula $\int {\dfrac{1}{x}dx} = {\log _e}x + c$
$ = {\log _e}t + {c_1}$
Substitute the value of $t$.
$ = {\log _e}\left| {2 + y} \right| + {c_1}$
Solve the integration $\int {\dfrac{{ - {e^x}dx}}{{\left( {5 + {e^x}} \right)}}} $ by substitute method.
Let $5 + {e^x} = z$.
Differentiate both sides by $x$.
$ \Rightarrow {e^x}dx = dz$
Substitute $5 + {e^x} = z$ and ${e^x}dx = dz$ in $\int {\dfrac{{ - {e^x}dx}}{{\left( {5 + {e^x}} \right)}}} $
$\int {\dfrac{{ - {e^x}dx}}{{\left( {5 + {e^x}} \right)}}} $
$ = - \int {\dfrac{{dz}}{z}} $
Apply the formula $\int {\dfrac{1}{x}dx} = {\log _e}x + c$
$ = - {\log _e}z + {c_2}$
Substitute the value of $z$.
$ = - {\log _e}\left| {5 + {e^x}} \right| + {c_2}$
Now putting $\int {\dfrac{{dy}}{{\left( {2 + y} \right)}}} = {\log _e}\left| {2 + y} \right| + {c_1}$ and $\int {\dfrac{{ - {e^x}dx}}{{\left( {5 + {e^x}} \right)}}} = - {\log _e}\left| {5 + {e^x}} \right| + {c_2}$in equation (1)
$\int {\dfrac{{dy}}{{\left( {2 + y} \right)}}} = \int {\dfrac{{ - {e^x}dx}}{{\left( {5 + {e^x}} \right)}}} $
$ \Rightarrow {\log _e}\left| {2 + y} \right| + {c_1} = - {\log _e}\left| {5 + {e^x}} \right| + {c_2}$
$ \Rightarrow {\log _e}\left| {2 + y} \right| + {\log _e}\left| {5 + {e^x}} \right| = {c_2} - {c_1}$
Apply the formula of sum logarithm
$ \Rightarrow {\log _e}\left| {\left( {2 + y} \right)\left( {5 + {e^x}} \right)} \right| = c$
Apply the inverse of the logarithm:
$ \Rightarrow \left( {2 + y} \right)\left( {5 + {e^x}} \right) = {e^c}$ …..(2)
Now put $x = 0$ and $y = 1$ in the above equation.
$ \Rightarrow \left( {2 + 1} \right)\left( {5 + {e^0}} \right) = {e^c}$
Substitute ${e^0} = 1$.
$ \Rightarrow \left( {2 + 1} \right)\left( {5 + 1} \right) = {e^c}$
$ \Rightarrow 18 = {e^c}$
Substitute the value of ${e^c}$ in the equation (2)
$\therefore \left( {2 + y} \right)\left( {5 + {e^x}} \right) = 18$
To calculate $y\left( {{{\log }_e}13} \right)$, substitute $x = {\log _e}13$ in the above equation.
$\therefore \left( {2 + y} \right)\left( {5 + {e^{{{\log }_e}13}}} \right) = 18$
$ \Rightarrow \left( {2 + y} \right)\left( {5 + 13} \right) = 18$
$ \Rightarrow \left( {2 + y} \right) \cdot 18 = 18$
Divide both sides by 18
$ \Rightarrow \left( {2 + y} \right) = 1$
Subtract 2 from both sides
$ \Rightarrow y = 1 - 2$
$ \Rightarrow y = - 1$
Option ‘D’ is correct
Note: If a differential equation is a mixture of two variables, then we have to rewrite the equation such that each side of the equation must contain only variables. Then we apply the substitution method.
Substitution method is a method to convert the given integration to the simplest form by substituting the independent variable with others.
Remember to find the integration constant, we need to put the initial value in the solution of the differential equation.
Formula Used:
$\int {\dfrac{1}{x}dx} = \log x + c$
$\dfrac{d}{{dx}}\left( {{e^x}} \right) = {e^x}$
Complete step by step solution:
Given differential equation is $\dfrac{{5 + {e^x}}}{{2 + y}}\dfrac{{dy}}{{dx}} + {e^x} = 0$.
Subtract ${e^x}$ from both sides of the equation.
$ \Rightarrow \dfrac{{5 + {e^x}}}{{2 + y}}\dfrac{{dy}}{{dx}} + {e^x} - {e^x} = 0 - {e^x}$
$ \Rightarrow \dfrac{{5 + {e^x}}}{{2 + y}}\dfrac{{dy}}{{dx}} = - {e^x}$
Multiply $dx$ on both sides of the equation
$ \Rightarrow \dfrac{{\left( {5 + {e^x}} \right)}}{{\left( {2 + y} \right)}}dy = - {e^x}dx$
Divide both sides by $5 + {e^x}$.
$ \Rightarrow \dfrac{{dy}}{{\left( {2 + y} \right)}} = \dfrac{{ - {e^x}dx}}{{\left( {5 + {e^x}} \right)}}$
Take integration operations on both sides of the equation.
$ \Rightarrow \int {\dfrac{{dy}}{{\left( {2 + y} \right)}}} = \int {\dfrac{{ - {e^x}dx}}{{\left( {5 + {e^x}} \right)}}} $ …..(1)
Solve the integration $\int {\dfrac{{dy}}{{\left( {2 + y} \right)}}} $ by substitute method.
Let $2 + y = t$.
Differentiate both sides by $x$.
$ \Rightarrow dy = dt$
Substitute $2 + y = t$ and $dy = dt$ in $\int {\dfrac{{dy}}{{\left( {2 + y} \right)}}} $
$\int {\dfrac{{dy}}{{\left( {2 + y} \right)}}} $
$ = \int {\dfrac{{dt}}{t}} $
Apply the formula $\int {\dfrac{1}{x}dx} = {\log _e}x + c$
$ = {\log _e}t + {c_1}$
Substitute the value of $t$.
$ = {\log _e}\left| {2 + y} \right| + {c_1}$
Solve the integration $\int {\dfrac{{ - {e^x}dx}}{{\left( {5 + {e^x}} \right)}}} $ by substitute method.
Let $5 + {e^x} = z$.
Differentiate both sides by $x$.
$ \Rightarrow {e^x}dx = dz$
Substitute $5 + {e^x} = z$ and ${e^x}dx = dz$ in $\int {\dfrac{{ - {e^x}dx}}{{\left( {5 + {e^x}} \right)}}} $
$\int {\dfrac{{ - {e^x}dx}}{{\left( {5 + {e^x}} \right)}}} $
$ = - \int {\dfrac{{dz}}{z}} $
Apply the formula $\int {\dfrac{1}{x}dx} = {\log _e}x + c$
$ = - {\log _e}z + {c_2}$
Substitute the value of $z$.
$ = - {\log _e}\left| {5 + {e^x}} \right| + {c_2}$
Now putting $\int {\dfrac{{dy}}{{\left( {2 + y} \right)}}} = {\log _e}\left| {2 + y} \right| + {c_1}$ and $\int {\dfrac{{ - {e^x}dx}}{{\left( {5 + {e^x}} \right)}}} = - {\log _e}\left| {5 + {e^x}} \right| + {c_2}$in equation (1)
$\int {\dfrac{{dy}}{{\left( {2 + y} \right)}}} = \int {\dfrac{{ - {e^x}dx}}{{\left( {5 + {e^x}} \right)}}} $
$ \Rightarrow {\log _e}\left| {2 + y} \right| + {c_1} = - {\log _e}\left| {5 + {e^x}} \right| + {c_2}$
$ \Rightarrow {\log _e}\left| {2 + y} \right| + {\log _e}\left| {5 + {e^x}} \right| = {c_2} - {c_1}$
Apply the formula of sum logarithm
$ \Rightarrow {\log _e}\left| {\left( {2 + y} \right)\left( {5 + {e^x}} \right)} \right| = c$
Apply the inverse of the logarithm:
$ \Rightarrow \left( {2 + y} \right)\left( {5 + {e^x}} \right) = {e^c}$ …..(2)
Now put $x = 0$ and $y = 1$ in the above equation.
$ \Rightarrow \left( {2 + 1} \right)\left( {5 + {e^0}} \right) = {e^c}$
Substitute ${e^0} = 1$.
$ \Rightarrow \left( {2 + 1} \right)\left( {5 + 1} \right) = {e^c}$
$ \Rightarrow 18 = {e^c}$
Substitute the value of ${e^c}$ in the equation (2)
$\therefore \left( {2 + y} \right)\left( {5 + {e^x}} \right) = 18$
To calculate $y\left( {{{\log }_e}13} \right)$, substitute $x = {\log _e}13$ in the above equation.
$\therefore \left( {2 + y} \right)\left( {5 + {e^{{{\log }_e}13}}} \right) = 18$
$ \Rightarrow \left( {2 + y} \right)\left( {5 + 13} \right) = 18$
$ \Rightarrow \left( {2 + y} \right) \cdot 18 = 18$
Divide both sides by 18
$ \Rightarrow \left( {2 + y} \right) = 1$
Subtract 2 from both sides
$ \Rightarrow y = 1 - 2$
$ \Rightarrow y = - 1$
Option ‘D’ is correct
Note: If a differential equation is a mixture of two variables, then we have to rewrite the equation such that each side of the equation must contain only variables. Then we apply the substitution method.
Substitution method is a method to convert the given integration to the simplest form by substituting the independent variable with others.
Remember to find the integration constant, we need to put the initial value in the solution of the differential equation.
Recently Updated Pages
Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Addition of Three Vectors: Methods & Examples

Addition of Vectors: Simple Guide for Students

Algebra Made Easy: Step-by-Step Guide for Students

Relations and Functions: Complete Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

