
If $y = y\left( x \right)$ is the solution of the differential equation $\dfrac{{5 + {e^x}}}{{2 + y}}\dfrac{{dy}}{{dx}} + {e^x} = 0$ satisfying $y\left( 0 \right) = 1$,then find the value of $y\left( {{{\log }_e}13} \right)$.
A. 1
B. 0
C. 2
D. -1
Answer
160.8k+ views
Hint: First we will rewrite the differential equation in the form $f\left( y \right)dy = g\left( x \right)dx$. Then by using the substitution method, solve the equation. Then use the initial value to calculate the value of the integrating constant. Put $x = {\log _e}13$in the solution of the differential equation to calculate $y\left( {{{\log }_e}13} \right)$.
Formula Used:
$\int {\dfrac{1}{x}dx} = \log x + c$
$\dfrac{d}{{dx}}\left( {{e^x}} \right) = {e^x}$
Complete step by step solution:
Given differential equation is $\dfrac{{5 + {e^x}}}{{2 + y}}\dfrac{{dy}}{{dx}} + {e^x} = 0$.
Subtract ${e^x}$ from both sides of the equation.
$ \Rightarrow \dfrac{{5 + {e^x}}}{{2 + y}}\dfrac{{dy}}{{dx}} + {e^x} - {e^x} = 0 - {e^x}$
$ \Rightarrow \dfrac{{5 + {e^x}}}{{2 + y}}\dfrac{{dy}}{{dx}} = - {e^x}$
Multiply $dx$ on both sides of the equation
$ \Rightarrow \dfrac{{\left( {5 + {e^x}} \right)}}{{\left( {2 + y} \right)}}dy = - {e^x}dx$
Divide both sides by $5 + {e^x}$.
$ \Rightarrow \dfrac{{dy}}{{\left( {2 + y} \right)}} = \dfrac{{ - {e^x}dx}}{{\left( {5 + {e^x}} \right)}}$
Take integration operations on both sides of the equation.
$ \Rightarrow \int {\dfrac{{dy}}{{\left( {2 + y} \right)}}} = \int {\dfrac{{ - {e^x}dx}}{{\left( {5 + {e^x}} \right)}}} $ …..(1)
Solve the integration $\int {\dfrac{{dy}}{{\left( {2 + y} \right)}}} $ by substitute method.
Let $2 + y = t$.
Differentiate both sides by $x$.
$ \Rightarrow dy = dt$
Substitute $2 + y = t$ and $dy = dt$ in $\int {\dfrac{{dy}}{{\left( {2 + y} \right)}}} $
$\int {\dfrac{{dy}}{{\left( {2 + y} \right)}}} $
$ = \int {\dfrac{{dt}}{t}} $
Apply the formula $\int {\dfrac{1}{x}dx} = {\log _e}x + c$
$ = {\log _e}t + {c_1}$
Substitute the value of $t$.
$ = {\log _e}\left| {2 + y} \right| + {c_1}$
Solve the integration $\int {\dfrac{{ - {e^x}dx}}{{\left( {5 + {e^x}} \right)}}} $ by substitute method.
Let $5 + {e^x} = z$.
Differentiate both sides by $x$.
$ \Rightarrow {e^x}dx = dz$
Substitute $5 + {e^x} = z$ and ${e^x}dx = dz$ in $\int {\dfrac{{ - {e^x}dx}}{{\left( {5 + {e^x}} \right)}}} $
$\int {\dfrac{{ - {e^x}dx}}{{\left( {5 + {e^x}} \right)}}} $
$ = - \int {\dfrac{{dz}}{z}} $
Apply the formula $\int {\dfrac{1}{x}dx} = {\log _e}x + c$
$ = - {\log _e}z + {c_2}$
Substitute the value of $z$.
$ = - {\log _e}\left| {5 + {e^x}} \right| + {c_2}$
Now putting $\int {\dfrac{{dy}}{{\left( {2 + y} \right)}}} = {\log _e}\left| {2 + y} \right| + {c_1}$ and $\int {\dfrac{{ - {e^x}dx}}{{\left( {5 + {e^x}} \right)}}} = - {\log _e}\left| {5 + {e^x}} \right| + {c_2}$in equation (1)
$\int {\dfrac{{dy}}{{\left( {2 + y} \right)}}} = \int {\dfrac{{ - {e^x}dx}}{{\left( {5 + {e^x}} \right)}}} $
$ \Rightarrow {\log _e}\left| {2 + y} \right| + {c_1} = - {\log _e}\left| {5 + {e^x}} \right| + {c_2}$
$ \Rightarrow {\log _e}\left| {2 + y} \right| + {\log _e}\left| {5 + {e^x}} \right| = {c_2} - {c_1}$
Apply the formula of sum logarithm
$ \Rightarrow {\log _e}\left| {\left( {2 + y} \right)\left( {5 + {e^x}} \right)} \right| = c$
Apply the inverse of the logarithm:
$ \Rightarrow \left( {2 + y} \right)\left( {5 + {e^x}} \right) = {e^c}$ …..(2)
Now put $x = 0$ and $y = 1$ in the above equation.
$ \Rightarrow \left( {2 + 1} \right)\left( {5 + {e^0}} \right) = {e^c}$
Substitute ${e^0} = 1$.
$ \Rightarrow \left( {2 + 1} \right)\left( {5 + 1} \right) = {e^c}$
$ \Rightarrow 18 = {e^c}$
Substitute the value of ${e^c}$ in the equation (2)
$\therefore \left( {2 + y} \right)\left( {5 + {e^x}} \right) = 18$
To calculate $y\left( {{{\log }_e}13} \right)$, substitute $x = {\log _e}13$ in the above equation.
$\therefore \left( {2 + y} \right)\left( {5 + {e^{{{\log }_e}13}}} \right) = 18$
$ \Rightarrow \left( {2 + y} \right)\left( {5 + 13} \right) = 18$
$ \Rightarrow \left( {2 + y} \right) \cdot 18 = 18$
Divide both sides by 18
$ \Rightarrow \left( {2 + y} \right) = 1$
Subtract 2 from both sides
$ \Rightarrow y = 1 - 2$
$ \Rightarrow y = - 1$
Option ‘D’ is correct
Note: If a differential equation is a mixture of two variables, then we have to rewrite the equation such that each side of the equation must contain only variables. Then we apply the substitution method.
Substitution method is a method to convert the given integration to the simplest form by substituting the independent variable with others.
Remember to find the integration constant, we need to put the initial value in the solution of the differential equation.
Formula Used:
$\int {\dfrac{1}{x}dx} = \log x + c$
$\dfrac{d}{{dx}}\left( {{e^x}} \right) = {e^x}$
Complete step by step solution:
Given differential equation is $\dfrac{{5 + {e^x}}}{{2 + y}}\dfrac{{dy}}{{dx}} + {e^x} = 0$.
Subtract ${e^x}$ from both sides of the equation.
$ \Rightarrow \dfrac{{5 + {e^x}}}{{2 + y}}\dfrac{{dy}}{{dx}} + {e^x} - {e^x} = 0 - {e^x}$
$ \Rightarrow \dfrac{{5 + {e^x}}}{{2 + y}}\dfrac{{dy}}{{dx}} = - {e^x}$
Multiply $dx$ on both sides of the equation
$ \Rightarrow \dfrac{{\left( {5 + {e^x}} \right)}}{{\left( {2 + y} \right)}}dy = - {e^x}dx$
Divide both sides by $5 + {e^x}$.
$ \Rightarrow \dfrac{{dy}}{{\left( {2 + y} \right)}} = \dfrac{{ - {e^x}dx}}{{\left( {5 + {e^x}} \right)}}$
Take integration operations on both sides of the equation.
$ \Rightarrow \int {\dfrac{{dy}}{{\left( {2 + y} \right)}}} = \int {\dfrac{{ - {e^x}dx}}{{\left( {5 + {e^x}} \right)}}} $ …..(1)
Solve the integration $\int {\dfrac{{dy}}{{\left( {2 + y} \right)}}} $ by substitute method.
Let $2 + y = t$.
Differentiate both sides by $x$.
$ \Rightarrow dy = dt$
Substitute $2 + y = t$ and $dy = dt$ in $\int {\dfrac{{dy}}{{\left( {2 + y} \right)}}} $
$\int {\dfrac{{dy}}{{\left( {2 + y} \right)}}} $
$ = \int {\dfrac{{dt}}{t}} $
Apply the formula $\int {\dfrac{1}{x}dx} = {\log _e}x + c$
$ = {\log _e}t + {c_1}$
Substitute the value of $t$.
$ = {\log _e}\left| {2 + y} \right| + {c_1}$
Solve the integration $\int {\dfrac{{ - {e^x}dx}}{{\left( {5 + {e^x}} \right)}}} $ by substitute method.
Let $5 + {e^x} = z$.
Differentiate both sides by $x$.
$ \Rightarrow {e^x}dx = dz$
Substitute $5 + {e^x} = z$ and ${e^x}dx = dz$ in $\int {\dfrac{{ - {e^x}dx}}{{\left( {5 + {e^x}} \right)}}} $
$\int {\dfrac{{ - {e^x}dx}}{{\left( {5 + {e^x}} \right)}}} $
$ = - \int {\dfrac{{dz}}{z}} $
Apply the formula $\int {\dfrac{1}{x}dx} = {\log _e}x + c$
$ = - {\log _e}z + {c_2}$
Substitute the value of $z$.
$ = - {\log _e}\left| {5 + {e^x}} \right| + {c_2}$
Now putting $\int {\dfrac{{dy}}{{\left( {2 + y} \right)}}} = {\log _e}\left| {2 + y} \right| + {c_1}$ and $\int {\dfrac{{ - {e^x}dx}}{{\left( {5 + {e^x}} \right)}}} = - {\log _e}\left| {5 + {e^x}} \right| + {c_2}$in equation (1)
$\int {\dfrac{{dy}}{{\left( {2 + y} \right)}}} = \int {\dfrac{{ - {e^x}dx}}{{\left( {5 + {e^x}} \right)}}} $
$ \Rightarrow {\log _e}\left| {2 + y} \right| + {c_1} = - {\log _e}\left| {5 + {e^x}} \right| + {c_2}$
$ \Rightarrow {\log _e}\left| {2 + y} \right| + {\log _e}\left| {5 + {e^x}} \right| = {c_2} - {c_1}$
Apply the formula of sum logarithm
$ \Rightarrow {\log _e}\left| {\left( {2 + y} \right)\left( {5 + {e^x}} \right)} \right| = c$
Apply the inverse of the logarithm:
$ \Rightarrow \left( {2 + y} \right)\left( {5 + {e^x}} \right) = {e^c}$ …..(2)
Now put $x = 0$ and $y = 1$ in the above equation.
$ \Rightarrow \left( {2 + 1} \right)\left( {5 + {e^0}} \right) = {e^c}$
Substitute ${e^0} = 1$.
$ \Rightarrow \left( {2 + 1} \right)\left( {5 + 1} \right) = {e^c}$
$ \Rightarrow 18 = {e^c}$
Substitute the value of ${e^c}$ in the equation (2)
$\therefore \left( {2 + y} \right)\left( {5 + {e^x}} \right) = 18$
To calculate $y\left( {{{\log }_e}13} \right)$, substitute $x = {\log _e}13$ in the above equation.
$\therefore \left( {2 + y} \right)\left( {5 + {e^{{{\log }_e}13}}} \right) = 18$
$ \Rightarrow \left( {2 + y} \right)\left( {5 + 13} \right) = 18$
$ \Rightarrow \left( {2 + y} \right) \cdot 18 = 18$
Divide both sides by 18
$ \Rightarrow \left( {2 + y} \right) = 1$
Subtract 2 from both sides
$ \Rightarrow y = 1 - 2$
$ \Rightarrow y = - 1$
Option ‘D’ is correct
Note: If a differential equation is a mixture of two variables, then we have to rewrite the equation such that each side of the equation must contain only variables. Then we apply the substitution method.
Substitution method is a method to convert the given integration to the simplest form by substituting the independent variable with others.
Remember to find the integration constant, we need to put the initial value in the solution of the differential equation.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025 Notes

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
