
If \[y = {t^{\dfrac{4}{3}}} - 3{t^{\dfrac{{ - 2}}{3}}}\], then what is the value of \[\dfrac{{dy}}{{dt}}\]?
A.\[\dfrac{{\left( {2{t^2} + 3} \right)}}{{2{t^{\dfrac{5}{3}}}}}\]
B.\[\dfrac{{\left( {2{t^2} + 3} \right)}}{{{t^{\dfrac{5}{3}}}}}\]
C.\[\dfrac{{2\left( {2{t^2} + 3} \right)}}{{{t^{\dfrac{5}{3}}}}}\]
D.\[\dfrac{{2\left( {2{t^2} + 3} \right)}}{{3{t^{\dfrac{5}{3}}}}}\]
Answer
164.4k+ views
Hint: In solving the above question, first differentiate each term with respect to \[t\], using derivative formula \[\dfrac{d}{{dx}}{x^n} = n \cdot {x^{\left( {n - 1} \right)}}\], and after that by simplifying the result we will get the desired result.
Formula used :
We will use the derivative formulas , \[\dfrac{d}{{dx}}{x^n} = n \cdot {x^{\left( {n - 1} \right)}}\], and exponential formula, \[{a^{ - m}} = \dfrac{1}{{{a^m}}}\].
Complete step by step solution:
Given \[y = {t^{\dfrac{4}{3}}} - 3{t^{\dfrac{{ - 2}}{3}}}\]
Now we will differentiate with respect to \[t\]on both sides,
\[ \Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{d}{{dt}}\left( {{t^{\dfrac{4}{3}}} - 3{t^{\dfrac{{ - 2}}{3}}}} \right)\],
Now we will distribute the differentiation on the right hand side, we will get,
\[ \Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{d}{{dt}}{t^{\dfrac{4}{3}}} - \dfrac{d}{{dt}}3{t^{\dfrac{{ - 2}}{3}}}\]
We will take out the constant term from the second term on the right hand side of the equation, we will get,
\[ \Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{d}{{dt}}{t^{\dfrac{4}{3}}} - 3\dfrac{d}{{dt}}{t^{\dfrac{{ - 2}}{3}}}\]
Now we will apply derivative formulas i.e., \[\dfrac{d}{{dx}}{x^n} = n \cdot {x^{\left( {n - 1} \right)}}\], then we will get,
\[ \Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{4}{3}\left( {{t^{\dfrac{4}{3} - 1}}} \right) - 3\left( {\dfrac{{ - 2}}{3}} \right)\left( {{t^{\dfrac{{ - 2}}{3} - 1}}} \right)\]
Now we will simplify the expression we will get,
\[ \Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{4}{3}\left( {{t^{\dfrac{{4 - 3}}{3}}}} \right) + 2\left( {{t^{\dfrac{{ - 2 - 3}}{3}}}} \right)\]
Now we will further simplify, we will get,
\[ \Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{4}{3}\left( {{t^{\dfrac{1}{3}}}} \right) + 2\left( {{t^{\dfrac{{ - 5}}{3}}}} \right)\]
Now we will take the L.C.M of the denominators i.e., L.C.M of 3 and 1 is 3, then we will get,
\[ \Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{{4{t^{\dfrac{1}{3}}} + 6{t^{\dfrac{{ - 5}}{3}}}}}{3}\]
Now we will take out the common factors, then we will get,
\[ \Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{{2\left( {2{t^{\dfrac{1}{3}}} + 3{t^{\dfrac{{ - 5}}{3}}}} \right)}}{3}\]
Now we will simplify further by taking out common factors, then we will get,
\[ \Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{{2{t^{\dfrac{{ - 5}}{3}}}\left( {2{t^2} + 3} \right)}}{3}\]
Now we will use exponential rule i.e, \[{a^{ - m}} = \dfrac{1}{{{a^m}}}\], then we will get,
\[ \Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{{2\left( {2{t^2} + 3} \right)}}{{3{t^{\dfrac{5}{3}}}}}\].
The correct option is D.
Note: Students often do a common mistake when they simplify the indices. Sometimes they do \[{t^{ - \dfrac{5}{3}}} = \dfrac{1}{{{t^{\dfrac{3}{5}}}}}\] which is wrong. The correct one is \[{t^{ - \dfrac{5}{3}}} = \dfrac{1}{{{t^{\dfrac{5}{3}}}}}\].
Formula used :
We will use the derivative formulas , \[\dfrac{d}{{dx}}{x^n} = n \cdot {x^{\left( {n - 1} \right)}}\], and exponential formula, \[{a^{ - m}} = \dfrac{1}{{{a^m}}}\].
Complete step by step solution:
Given \[y = {t^{\dfrac{4}{3}}} - 3{t^{\dfrac{{ - 2}}{3}}}\]
Now we will differentiate with respect to \[t\]on both sides,
\[ \Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{d}{{dt}}\left( {{t^{\dfrac{4}{3}}} - 3{t^{\dfrac{{ - 2}}{3}}}} \right)\],
Now we will distribute the differentiation on the right hand side, we will get,
\[ \Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{d}{{dt}}{t^{\dfrac{4}{3}}} - \dfrac{d}{{dt}}3{t^{\dfrac{{ - 2}}{3}}}\]
We will take out the constant term from the second term on the right hand side of the equation, we will get,
\[ \Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{d}{{dt}}{t^{\dfrac{4}{3}}} - 3\dfrac{d}{{dt}}{t^{\dfrac{{ - 2}}{3}}}\]
Now we will apply derivative formulas i.e., \[\dfrac{d}{{dx}}{x^n} = n \cdot {x^{\left( {n - 1} \right)}}\], then we will get,
\[ \Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{4}{3}\left( {{t^{\dfrac{4}{3} - 1}}} \right) - 3\left( {\dfrac{{ - 2}}{3}} \right)\left( {{t^{\dfrac{{ - 2}}{3} - 1}}} \right)\]
Now we will simplify the expression we will get,
\[ \Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{4}{3}\left( {{t^{\dfrac{{4 - 3}}{3}}}} \right) + 2\left( {{t^{\dfrac{{ - 2 - 3}}{3}}}} \right)\]
Now we will further simplify, we will get,
\[ \Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{4}{3}\left( {{t^{\dfrac{1}{3}}}} \right) + 2\left( {{t^{\dfrac{{ - 5}}{3}}}} \right)\]
Now we will take the L.C.M of the denominators i.e., L.C.M of 3 and 1 is 3, then we will get,
\[ \Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{{4{t^{\dfrac{1}{3}}} + 6{t^{\dfrac{{ - 5}}{3}}}}}{3}\]
Now we will take out the common factors, then we will get,
\[ \Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{{2\left( {2{t^{\dfrac{1}{3}}} + 3{t^{\dfrac{{ - 5}}{3}}}} \right)}}{3}\]
Now we will simplify further by taking out common factors, then we will get,
\[ \Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{{2{t^{\dfrac{{ - 5}}{3}}}\left( {2{t^2} + 3} \right)}}{3}\]
Now we will use exponential rule i.e, \[{a^{ - m}} = \dfrac{1}{{{a^m}}}\], then we will get,
\[ \Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{{2\left( {2{t^2} + 3} \right)}}{{3{t^{\dfrac{5}{3}}}}}\].
The correct option is D.
Note: Students often do a common mistake when they simplify the indices. Sometimes they do \[{t^{ - \dfrac{5}{3}}} = \dfrac{1}{{{t^{\dfrac{3}{5}}}}}\] which is wrong. The correct one is \[{t^{ - \dfrac{5}{3}}} = \dfrac{1}{{{t^{\dfrac{5}{3}}}}}\].
Recently Updated Pages
Environmental Chemistry Chapter for JEE Main Chemistry

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Newton’s Laws of Motion – Definition, Principles, and Examples

JEE Main Physics Kinematics for JEE Main 2025

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Advanced 2025 Notes
