
If \[y = {\left( {x \log x} \right)^{ \log \log x}}\], then \[ \dfrac{{dy}}{{dx}}\]equals to
A. \[\left\{ {{{\left( {x \log x} \right)}^{ \log \log x}}\;\left\{ {\left( { \dfrac{{1 }}{{x \log x}}} \right) \left( { \log x + \log \log x} \right) + \left( { \log \log x} \right) \left[ {\left( { \dfrac{1}{x}} \right) + \left( { \dfrac{1}{{x \log x}}} \right)} \right]} \right\}} \right\}\]
B. \[\left\{ {{{\left( {x \log x} \right)}^{ \log \log x}} \log \log x = \left[ {\left( { \dfrac{2}{{ \log x}}} \right) + \left( { \dfrac{1}{x}} \right)} \right]} \right\}\]
C. \[{\left( {x \log x} \right)^{x \log x}}\;\left[ { \dfrac{{\left( { \log \log x} \right)}}{x}} \right] \left[ {\left( { \dfrac{1}{{ \log x}}} \right) + 1} \right]\]
D. \[\left[ {\left( y \right) \dfrac{{ \log y}}{{x \log x}} } \right]\left[ {2 \log \left( { \log x} \right) + 1} \right]\]
Answer
163.5k+ views
Hint: As we have the log function on one side and variable on another side of the problem. So, proceed solving by taking log on both side of the equation and then rearrange the terms. Then the properties of log are applied to get the differentiable term. Thereafter differentiating the obtained log function to get the required solution.
Formula Used:
The differentiation of any log function within the log function as given here:
\[y = \log\left( { logx} \right)\]
Differentiating with respect to \[x\]. By chain rule, we get
\[ \dfrac{{dy}}{{dx}} = \dfrac{1}{{ \log x}} \times \dfrac{1}{{x}} = \dfrac{1}{{x \log x}}\]
The power of log is evaluated by the property of \[ \log {x^n} = n \log x\].
The addition within log is evaluated by the property of \[ \log \left( {x \times y} \right) = \log x + \log y\].
Complete step-by-step answer:
The given function is \[y = {\left( {x \log x} \right)^{ \log \log x}}\]
Take log on the both side of \[y = {\left( {x \log x} \right)^{ \log \log x}}\], we get
\[ \log y = \log \;(x\;{( \log x)^{ \log \; \log x}})\]
Rearranging the expression, we get
\[ \log y = \log x \cdot \;{\left( { \log x} \right)^{ \log \log x}}\]
Again, taking log on both sides, we get
\[ \log \left( { \log y} \right) = \log \left[ {{{\left( { \log x} \right)}^{ \log \log x}}\;\left( { \log x} \right)} \right]\]
Rearrange the above equation, we get
\[ \log \left( { \log y} \right) = \log{\left( { \log x} \right)^{ \log \log x}} + \log \left( { \log x} \right)\]
Using the properties of log on Right-hand side, we get
\[ \log\left( { \log y} \right) = \log\left( { \log x} \right). \log\left( { \log x} \right) + \log\left( { \log x} \right)\]
Again, rearranging it to get the differentiable term.
\[ \log \left( { \log y} \right) = {\left[ { \log\left( { \log x} \right)} \right]^2} + \log\left( { \log x} \right)\]
Now differentiate both the sides
\[\left( { \dfrac{1}{{ \log y}}} \right)\left( { \dfrac{1}{y}} \right)\left( { \dfrac{{dy}}{{dx}}} \right) = 2\left[ { \log \left( { \log x} \right)} \right]\left( { \dfrac{1}{{ \log x}}} \right)\left( { \dfrac{1}{x}} \right) + \left( { \dfrac{1}{{ \log x}}} \right)\left( { \dfrac{1}{x}} \right)\]
Taking common on the right-hand side, we get
\[\left( { \dfrac{1}{{y \log y}}} \right)\left( { \dfrac{{dy}}{{dx}}} \right) = \left( { \dfrac{1}{{ x \log x}}} \right)\left( {2 \log \left( { \log x} \right) + 1} \right)\]
Further evaluating the above terms, we get
\[\left( { \dfrac{{dy}}{{dx}}} \right) = \left[ { \dfrac{{y \log y}}{{ x \log x}}} \right]\left[ {2 \log \left( { \log x} \right) + 1} \right]\]
Hence option D is the correct option.
Note:
One should apply the properties of log with uttermost care. Also, the differentiation of the Right-hand side and left-hand side can be done separately to eliminate any confusion. This problem can also be solved by rearranging the term \[y = {\left( {x \log x} \right)^{ \log \log x}}\]to \[ \dfrac{y}{x} = {\left( { \log x} \right)^{ \log \log x}}\]and then taking exponential function on both side of the equation.
Formula Used:
The differentiation of any log function within the log function as given here:
\[y = \log\left( { logx} \right)\]
Differentiating with respect to \[x\]. By chain rule, we get
\[ \dfrac{{dy}}{{dx}} = \dfrac{1}{{ \log x}} \times \dfrac{1}{{x}} = \dfrac{1}{{x \log x}}\]
The power of log is evaluated by the property of \[ \log {x^n} = n \log x\].
The addition within log is evaluated by the property of \[ \log \left( {x \times y} \right) = \log x + \log y\].
Complete step-by-step answer:
The given function is \[y = {\left( {x \log x} \right)^{ \log \log x}}\]
Take log on the both side of \[y = {\left( {x \log x} \right)^{ \log \log x}}\], we get
\[ \log y = \log \;(x\;{( \log x)^{ \log \; \log x}})\]
Rearranging the expression, we get
\[ \log y = \log x \cdot \;{\left( { \log x} \right)^{ \log \log x}}\]
Again, taking log on both sides, we get
\[ \log \left( { \log y} \right) = \log \left[ {{{\left( { \log x} \right)}^{ \log \log x}}\;\left( { \log x} \right)} \right]\]
Rearrange the above equation, we get
\[ \log \left( { \log y} \right) = \log{\left( { \log x} \right)^{ \log \log x}} + \log \left( { \log x} \right)\]
Using the properties of log on Right-hand side, we get
\[ \log\left( { \log y} \right) = \log\left( { \log x} \right). \log\left( { \log x} \right) + \log\left( { \log x} \right)\]
Again, rearranging it to get the differentiable term.
\[ \log \left( { \log y} \right) = {\left[ { \log\left( { \log x} \right)} \right]^2} + \log\left( { \log x} \right)\]
Now differentiate both the sides
\[\left( { \dfrac{1}{{ \log y}}} \right)\left( { \dfrac{1}{y}} \right)\left( { \dfrac{{dy}}{{dx}}} \right) = 2\left[ { \log \left( { \log x} \right)} \right]\left( { \dfrac{1}{{ \log x}}} \right)\left( { \dfrac{1}{x}} \right) + \left( { \dfrac{1}{{ \log x}}} \right)\left( { \dfrac{1}{x}} \right)\]
Taking common on the right-hand side, we get
\[\left( { \dfrac{1}{{y \log y}}} \right)\left( { \dfrac{{dy}}{{dx}}} \right) = \left( { \dfrac{1}{{ x \log x}}} \right)\left( {2 \log \left( { \log x} \right) + 1} \right)\]
Further evaluating the above terms, we get
\[\left( { \dfrac{{dy}}{{dx}}} \right) = \left[ { \dfrac{{y \log y}}{{ x \log x}}} \right]\left[ {2 \log \left( { \log x} \right) + 1} \right]\]
Hence option D is the correct option.
Note:
One should apply the properties of log with uttermost care. Also, the differentiation of the Right-hand side and left-hand side can be done separately to eliminate any confusion. This problem can also be solved by rearranging the term \[y = {\left( {x \log x} \right)^{ \log \log x}}\]to \[ \dfrac{y}{x} = {\left( { \log x} \right)^{ \log \log x}}\]and then taking exponential function on both side of the equation.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets
