
If \[y = {\left( {x \log x} \right)^{ \log \log x}}\], then \[ \dfrac{{dy}}{{dx}}\]equals to
A. \[\left\{ {{{\left( {x \log x} \right)}^{ \log \log x}}\;\left\{ {\left( { \dfrac{{1 }}{{x \log x}}} \right) \left( { \log x + \log \log x} \right) + \left( { \log \log x} \right) \left[ {\left( { \dfrac{1}{x}} \right) + \left( { \dfrac{1}{{x \log x}}} \right)} \right]} \right\}} \right\}\]
B. \[\left\{ {{{\left( {x \log x} \right)}^{ \log \log x}} \log \log x = \left[ {\left( { \dfrac{2}{{ \log x}}} \right) + \left( { \dfrac{1}{x}} \right)} \right]} \right\}\]
C. \[{\left( {x \log x} \right)^{x \log x}}\;\left[ { \dfrac{{\left( { \log \log x} \right)}}{x}} \right] \left[ {\left( { \dfrac{1}{{ \log x}}} \right) + 1} \right]\]
D. \[\left[ {\left( y \right) \dfrac{{ \log y}}{{x \log x}} } \right]\left[ {2 \log \left( { \log x} \right) + 1} \right]\]
Answer
216.6k+ views
Hint: As we have the log function on one side and variable on another side of the problem. So, proceed solving by taking log on both side of the equation and then rearrange the terms. Then the properties of log are applied to get the differentiable term. Thereafter differentiating the obtained log function to get the required solution.
Formula Used:
The differentiation of any log function within the log function as given here:
\[y = \log\left( { logx} \right)\]
Differentiating with respect to \[x\]. By chain rule, we get
\[ \dfrac{{dy}}{{dx}} = \dfrac{1}{{ \log x}} \times \dfrac{1}{{x}} = \dfrac{1}{{x \log x}}\]
The power of log is evaluated by the property of \[ \log {x^n} = n \log x\].
The addition within log is evaluated by the property of \[ \log \left( {x \times y} \right) = \log x + \log y\].
Complete step-by-step answer:
The given function is \[y = {\left( {x \log x} \right)^{ \log \log x}}\]
Take log on the both side of \[y = {\left( {x \log x} \right)^{ \log \log x}}\], we get
\[ \log y = \log \;(x\;{( \log x)^{ \log \; \log x}})\]
Rearranging the expression, we get
\[ \log y = \log x \cdot \;{\left( { \log x} \right)^{ \log \log x}}\]
Again, taking log on both sides, we get
\[ \log \left( { \log y} \right) = \log \left[ {{{\left( { \log x} \right)}^{ \log \log x}}\;\left( { \log x} \right)} \right]\]
Rearrange the above equation, we get
\[ \log \left( { \log y} \right) = \log{\left( { \log x} \right)^{ \log \log x}} + \log \left( { \log x} \right)\]
Using the properties of log on Right-hand side, we get
\[ \log\left( { \log y} \right) = \log\left( { \log x} \right). \log\left( { \log x} \right) + \log\left( { \log x} \right)\]
Again, rearranging it to get the differentiable term.
\[ \log \left( { \log y} \right) = {\left[ { \log\left( { \log x} \right)} \right]^2} + \log\left( { \log x} \right)\]
Now differentiate both the sides
\[\left( { \dfrac{1}{{ \log y}}} \right)\left( { \dfrac{1}{y}} \right)\left( { \dfrac{{dy}}{{dx}}} \right) = 2\left[ { \log \left( { \log x} \right)} \right]\left( { \dfrac{1}{{ \log x}}} \right)\left( { \dfrac{1}{x}} \right) + \left( { \dfrac{1}{{ \log x}}} \right)\left( { \dfrac{1}{x}} \right)\]
Taking common on the right-hand side, we get
\[\left( { \dfrac{1}{{y \log y}}} \right)\left( { \dfrac{{dy}}{{dx}}} \right) = \left( { \dfrac{1}{{ x \log x}}} \right)\left( {2 \log \left( { \log x} \right) + 1} \right)\]
Further evaluating the above terms, we get
\[\left( { \dfrac{{dy}}{{dx}}} \right) = \left[ { \dfrac{{y \log y}}{{ x \log x}}} \right]\left[ {2 \log \left( { \log x} \right) + 1} \right]\]
Hence option D is the correct option.
Note:
One should apply the properties of log with uttermost care. Also, the differentiation of the Right-hand side and left-hand side can be done separately to eliminate any confusion. This problem can also be solved by rearranging the term \[y = {\left( {x \log x} \right)^{ \log \log x}}\]to \[ \dfrac{y}{x} = {\left( { \log x} \right)^{ \log \log x}}\]and then taking exponential function on both side of the equation.
Formula Used:
The differentiation of any log function within the log function as given here:
\[y = \log\left( { logx} \right)\]
Differentiating with respect to \[x\]. By chain rule, we get
\[ \dfrac{{dy}}{{dx}} = \dfrac{1}{{ \log x}} \times \dfrac{1}{{x}} = \dfrac{1}{{x \log x}}\]
The power of log is evaluated by the property of \[ \log {x^n} = n \log x\].
The addition within log is evaluated by the property of \[ \log \left( {x \times y} \right) = \log x + \log y\].
Complete step-by-step answer:
The given function is \[y = {\left( {x \log x} \right)^{ \log \log x}}\]
Take log on the both side of \[y = {\left( {x \log x} \right)^{ \log \log x}}\], we get
\[ \log y = \log \;(x\;{( \log x)^{ \log \; \log x}})\]
Rearranging the expression, we get
\[ \log y = \log x \cdot \;{\left( { \log x} \right)^{ \log \log x}}\]
Again, taking log on both sides, we get
\[ \log \left( { \log y} \right) = \log \left[ {{{\left( { \log x} \right)}^{ \log \log x}}\;\left( { \log x} \right)} \right]\]
Rearrange the above equation, we get
\[ \log \left( { \log y} \right) = \log{\left( { \log x} \right)^{ \log \log x}} + \log \left( { \log x} \right)\]
Using the properties of log on Right-hand side, we get
\[ \log\left( { \log y} \right) = \log\left( { \log x} \right). \log\left( { \log x} \right) + \log\left( { \log x} \right)\]
Again, rearranging it to get the differentiable term.
\[ \log \left( { \log y} \right) = {\left[ { \log\left( { \log x} \right)} \right]^2} + \log\left( { \log x} \right)\]
Now differentiate both the sides
\[\left( { \dfrac{1}{{ \log y}}} \right)\left( { \dfrac{1}{y}} \right)\left( { \dfrac{{dy}}{{dx}}} \right) = 2\left[ { \log \left( { \log x} \right)} \right]\left( { \dfrac{1}{{ \log x}}} \right)\left( { \dfrac{1}{x}} \right) + \left( { \dfrac{1}{{ \log x}}} \right)\left( { \dfrac{1}{x}} \right)\]
Taking common on the right-hand side, we get
\[\left( { \dfrac{1}{{y \log y}}} \right)\left( { \dfrac{{dy}}{{dx}}} \right) = \left( { \dfrac{1}{{ x \log x}}} \right)\left( {2 \log \left( { \log x} \right) + 1} \right)\]
Further evaluating the above terms, we get
\[\left( { \dfrac{{dy}}{{dx}}} \right) = \left[ { \dfrac{{y \log y}}{{ x \log x}}} \right]\left[ {2 \log \left( { \log x} \right) + 1} \right]\]
Hence option D is the correct option.
Note:
One should apply the properties of log with uttermost care. Also, the differentiation of the Right-hand side and left-hand side can be done separately to eliminate any confusion. This problem can also be solved by rearranging the term \[y = {\left( {x \log x} \right)^{ \log \log x}}\]to \[ \dfrac{y}{x} = {\left( { \log x} \right)^{ \log \log x}}\]and then taking exponential function on both side of the equation.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

