
If \[y = {\left( {x \log x} \right)^{ \log \log x}}\], then \[ \dfrac{{dy}}{{dx}}\]equals to
A. \[\left\{ {{{\left( {x \log x} \right)}^{ \log \log x}}\;\left\{ {\left( { \dfrac{{1 }}{{x \log x}}} \right) \left( { \log x + \log \log x} \right) + \left( { \log \log x} \right) \left[ {\left( { \dfrac{1}{x}} \right) + \left( { \dfrac{1}{{x \log x}}} \right)} \right]} \right\}} \right\}\]
B. \[\left\{ {{{\left( {x \log x} \right)}^{ \log \log x}} \log \log x = \left[ {\left( { \dfrac{2}{{ \log x}}} \right) + \left( { \dfrac{1}{x}} \right)} \right]} \right\}\]
C. \[{\left( {x \log x} \right)^{x \log x}}\;\left[ { \dfrac{{\left( { \log \log x} \right)}}{x}} \right] \left[ {\left( { \dfrac{1}{{ \log x}}} \right) + 1} \right]\]
D. \[\left[ {\left( y \right) \dfrac{{ \log y}}{{x \log x}} } \right]\left[ {2 \log \left( { \log x} \right) + 1} \right]\]
Answer
232.8k+ views
Hint: As we have the log function on one side and variable on another side of the problem. So, proceed solving by taking log on both side of the equation and then rearrange the terms. Then the properties of log are applied to get the differentiable term. Thereafter differentiating the obtained log function to get the required solution.
Formula Used:
The differentiation of any log function within the log function as given here:
\[y = \log\left( { logx} \right)\]
Differentiating with respect to \[x\]. By chain rule, we get
\[ \dfrac{{dy}}{{dx}} = \dfrac{1}{{ \log x}} \times \dfrac{1}{{x}} = \dfrac{1}{{x \log x}}\]
The power of log is evaluated by the property of \[ \log {x^n} = n \log x\].
The addition within log is evaluated by the property of \[ \log \left( {x \times y} \right) = \log x + \log y\].
Complete step-by-step answer:
The given function is \[y = {\left( {x \log x} \right)^{ \log \log x}}\]
Take log on the both side of \[y = {\left( {x \log x} \right)^{ \log \log x}}\], we get
\[ \log y = \log \;(x\;{( \log x)^{ \log \; \log x}})\]
Rearranging the expression, we get
\[ \log y = \log x \cdot \;{\left( { \log x} \right)^{ \log \log x}}\]
Again, taking log on both sides, we get
\[ \log \left( { \log y} \right) = \log \left[ {{{\left( { \log x} \right)}^{ \log \log x}}\;\left( { \log x} \right)} \right]\]
Rearrange the above equation, we get
\[ \log \left( { \log y} \right) = \log{\left( { \log x} \right)^{ \log \log x}} + \log \left( { \log x} \right)\]
Using the properties of log on Right-hand side, we get
\[ \log\left( { \log y} \right) = \log\left( { \log x} \right). \log\left( { \log x} \right) + \log\left( { \log x} \right)\]
Again, rearranging it to get the differentiable term.
\[ \log \left( { \log y} \right) = {\left[ { \log\left( { \log x} \right)} \right]^2} + \log\left( { \log x} \right)\]
Now differentiate both the sides
\[\left( { \dfrac{1}{{ \log y}}} \right)\left( { \dfrac{1}{y}} \right)\left( { \dfrac{{dy}}{{dx}}} \right) = 2\left[ { \log \left( { \log x} \right)} \right]\left( { \dfrac{1}{{ \log x}}} \right)\left( { \dfrac{1}{x}} \right) + \left( { \dfrac{1}{{ \log x}}} \right)\left( { \dfrac{1}{x}} \right)\]
Taking common on the right-hand side, we get
\[\left( { \dfrac{1}{{y \log y}}} \right)\left( { \dfrac{{dy}}{{dx}}} \right) = \left( { \dfrac{1}{{ x \log x}}} \right)\left( {2 \log \left( { \log x} \right) + 1} \right)\]
Further evaluating the above terms, we get
\[\left( { \dfrac{{dy}}{{dx}}} \right) = \left[ { \dfrac{{y \log y}}{{ x \log x}}} \right]\left[ {2 \log \left( { \log x} \right) + 1} \right]\]
Hence option D is the correct option.
Note:
One should apply the properties of log with uttermost care. Also, the differentiation of the Right-hand side and left-hand side can be done separately to eliminate any confusion. This problem can also be solved by rearranging the term \[y = {\left( {x \log x} \right)^{ \log \log x}}\]to \[ \dfrac{y}{x} = {\left( { \log x} \right)^{ \log \log x}}\]and then taking exponential function on both side of the equation.
Formula Used:
The differentiation of any log function within the log function as given here:
\[y = \log\left( { logx} \right)\]
Differentiating with respect to \[x\]. By chain rule, we get
\[ \dfrac{{dy}}{{dx}} = \dfrac{1}{{ \log x}} \times \dfrac{1}{{x}} = \dfrac{1}{{x \log x}}\]
The power of log is evaluated by the property of \[ \log {x^n} = n \log x\].
The addition within log is evaluated by the property of \[ \log \left( {x \times y} \right) = \log x + \log y\].
Complete step-by-step answer:
The given function is \[y = {\left( {x \log x} \right)^{ \log \log x}}\]
Take log on the both side of \[y = {\left( {x \log x} \right)^{ \log \log x}}\], we get
\[ \log y = \log \;(x\;{( \log x)^{ \log \; \log x}})\]
Rearranging the expression, we get
\[ \log y = \log x \cdot \;{\left( { \log x} \right)^{ \log \log x}}\]
Again, taking log on both sides, we get
\[ \log \left( { \log y} \right) = \log \left[ {{{\left( { \log x} \right)}^{ \log \log x}}\;\left( { \log x} \right)} \right]\]
Rearrange the above equation, we get
\[ \log \left( { \log y} \right) = \log{\left( { \log x} \right)^{ \log \log x}} + \log \left( { \log x} \right)\]
Using the properties of log on Right-hand side, we get
\[ \log\left( { \log y} \right) = \log\left( { \log x} \right). \log\left( { \log x} \right) + \log\left( { \log x} \right)\]
Again, rearranging it to get the differentiable term.
\[ \log \left( { \log y} \right) = {\left[ { \log\left( { \log x} \right)} \right]^2} + \log\left( { \log x} \right)\]
Now differentiate both the sides
\[\left( { \dfrac{1}{{ \log y}}} \right)\left( { \dfrac{1}{y}} \right)\left( { \dfrac{{dy}}{{dx}}} \right) = 2\left[ { \log \left( { \log x} \right)} \right]\left( { \dfrac{1}{{ \log x}}} \right)\left( { \dfrac{1}{x}} \right) + \left( { \dfrac{1}{{ \log x}}} \right)\left( { \dfrac{1}{x}} \right)\]
Taking common on the right-hand side, we get
\[\left( { \dfrac{1}{{y \log y}}} \right)\left( { \dfrac{{dy}}{{dx}}} \right) = \left( { \dfrac{1}{{ x \log x}}} \right)\left( {2 \log \left( { \log x} \right) + 1} \right)\]
Further evaluating the above terms, we get
\[\left( { \dfrac{{dy}}{{dx}}} \right) = \left[ { \dfrac{{y \log y}}{{ x \log x}}} \right]\left[ {2 \log \left( { \log x} \right) + 1} \right]\]
Hence option D is the correct option.
Note:
One should apply the properties of log with uttermost care. Also, the differentiation of the Right-hand side and left-hand side can be done separately to eliminate any confusion. This problem can also be solved by rearranging the term \[y = {\left( {x \log x} \right)^{ \log \log x}}\]to \[ \dfrac{y}{x} = {\left( { \log x} \right)^{ \log \log x}}\]and then taking exponential function on both side of the equation.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

