
If \[y = {\left( {x \log x} \right)^{ \log \log x}}\], then \[ \dfrac{{dy}}{{dx}}\]equals to
A. \[\left\{ {{{\left( {x \log x} \right)}^{ \log \log x}}\;\left\{ {\left( { \dfrac{{1 }}{{x \log x}}} \right) \left( { \log x + \log \log x} \right) + \left( { \log \log x} \right) \left[ {\left( { \dfrac{1}{x}} \right) + \left( { \dfrac{1}{{x \log x}}} \right)} \right]} \right\}} \right\}\]
B. \[\left\{ {{{\left( {x \log x} \right)}^{ \log \log x}} \log \log x = \left[ {\left( { \dfrac{2}{{ \log x}}} \right) + \left( { \dfrac{1}{x}} \right)} \right]} \right\}\]
C. \[{\left( {x \log x} \right)^{x \log x}}\;\left[ { \dfrac{{\left( { \log \log x} \right)}}{x}} \right] \left[ {\left( { \dfrac{1}{{ \log x}}} \right) + 1} \right]\]
D. \[\left[ {\left( y \right) \dfrac{{ \log y}}{{x \log x}} } \right]\left[ {2 \log \left( { \log x} \right) + 1} \right]\]
Answer
197.1k+ views
Hint: As we have the log function on one side and variable on another side of the problem. So, proceed solving by taking log on both side of the equation and then rearrange the terms. Then the properties of log are applied to get the differentiable term. Thereafter differentiating the obtained log function to get the required solution.
Formula Used:
The differentiation of any log function within the log function as given here:
\[y = \log\left( { logx} \right)\]
Differentiating with respect to \[x\]. By chain rule, we get
\[ \dfrac{{dy}}{{dx}} = \dfrac{1}{{ \log x}} \times \dfrac{1}{{x}} = \dfrac{1}{{x \log x}}\]
The power of log is evaluated by the property of \[ \log {x^n} = n \log x\].
The addition within log is evaluated by the property of \[ \log \left( {x \times y} \right) = \log x + \log y\].
Complete step-by-step answer:
The given function is \[y = {\left( {x \log x} \right)^{ \log \log x}}\]
Take log on the both side of \[y = {\left( {x \log x} \right)^{ \log \log x}}\], we get
\[ \log y = \log \;(x\;{( \log x)^{ \log \; \log x}})\]
Rearranging the expression, we get
\[ \log y = \log x \cdot \;{\left( { \log x} \right)^{ \log \log x}}\]
Again, taking log on both sides, we get
\[ \log \left( { \log y} \right) = \log \left[ {{{\left( { \log x} \right)}^{ \log \log x}}\;\left( { \log x} \right)} \right]\]
Rearrange the above equation, we get
\[ \log \left( { \log y} \right) = \log{\left( { \log x} \right)^{ \log \log x}} + \log \left( { \log x} \right)\]
Using the properties of log on Right-hand side, we get
\[ \log\left( { \log y} \right) = \log\left( { \log x} \right). \log\left( { \log x} \right) + \log\left( { \log x} \right)\]
Again, rearranging it to get the differentiable term.
\[ \log \left( { \log y} \right) = {\left[ { \log\left( { \log x} \right)} \right]^2} + \log\left( { \log x} \right)\]
Now differentiate both the sides
\[\left( { \dfrac{1}{{ \log y}}} \right)\left( { \dfrac{1}{y}} \right)\left( { \dfrac{{dy}}{{dx}}} \right) = 2\left[ { \log \left( { \log x} \right)} \right]\left( { \dfrac{1}{{ \log x}}} \right)\left( { \dfrac{1}{x}} \right) + \left( { \dfrac{1}{{ \log x}}} \right)\left( { \dfrac{1}{x}} \right)\]
Taking common on the right-hand side, we get
\[\left( { \dfrac{1}{{y \log y}}} \right)\left( { \dfrac{{dy}}{{dx}}} \right) = \left( { \dfrac{1}{{ x \log x}}} \right)\left( {2 \log \left( { \log x} \right) + 1} \right)\]
Further evaluating the above terms, we get
\[\left( { \dfrac{{dy}}{{dx}}} \right) = \left[ { \dfrac{{y \log y}}{{ x \log x}}} \right]\left[ {2 \log \left( { \log x} \right) + 1} \right]\]
Hence option D is the correct option.
Note:
One should apply the properties of log with uttermost care. Also, the differentiation of the Right-hand side and left-hand side can be done separately to eliminate any confusion. This problem can also be solved by rearranging the term \[y = {\left( {x \log x} \right)^{ \log \log x}}\]to \[ \dfrac{y}{x} = {\left( { \log x} \right)^{ \log \log x}}\]and then taking exponential function on both side of the equation.
Formula Used:
The differentiation of any log function within the log function as given here:
\[y = \log\left( { logx} \right)\]
Differentiating with respect to \[x\]. By chain rule, we get
\[ \dfrac{{dy}}{{dx}} = \dfrac{1}{{ \log x}} \times \dfrac{1}{{x}} = \dfrac{1}{{x \log x}}\]
The power of log is evaluated by the property of \[ \log {x^n} = n \log x\].
The addition within log is evaluated by the property of \[ \log \left( {x \times y} \right) = \log x + \log y\].
Complete step-by-step answer:
The given function is \[y = {\left( {x \log x} \right)^{ \log \log x}}\]
Take log on the both side of \[y = {\left( {x \log x} \right)^{ \log \log x}}\], we get
\[ \log y = \log \;(x\;{( \log x)^{ \log \; \log x}})\]
Rearranging the expression, we get
\[ \log y = \log x \cdot \;{\left( { \log x} \right)^{ \log \log x}}\]
Again, taking log on both sides, we get
\[ \log \left( { \log y} \right) = \log \left[ {{{\left( { \log x} \right)}^{ \log \log x}}\;\left( { \log x} \right)} \right]\]
Rearrange the above equation, we get
\[ \log \left( { \log y} \right) = \log{\left( { \log x} \right)^{ \log \log x}} + \log \left( { \log x} \right)\]
Using the properties of log on Right-hand side, we get
\[ \log\left( { \log y} \right) = \log\left( { \log x} \right). \log\left( { \log x} \right) + \log\left( { \log x} \right)\]
Again, rearranging it to get the differentiable term.
\[ \log \left( { \log y} \right) = {\left[ { \log\left( { \log x} \right)} \right]^2} + \log\left( { \log x} \right)\]
Now differentiate both the sides
\[\left( { \dfrac{1}{{ \log y}}} \right)\left( { \dfrac{1}{y}} \right)\left( { \dfrac{{dy}}{{dx}}} \right) = 2\left[ { \log \left( { \log x} \right)} \right]\left( { \dfrac{1}{{ \log x}}} \right)\left( { \dfrac{1}{x}} \right) + \left( { \dfrac{1}{{ \log x}}} \right)\left( { \dfrac{1}{x}} \right)\]
Taking common on the right-hand side, we get
\[\left( { \dfrac{1}{{y \log y}}} \right)\left( { \dfrac{{dy}}{{dx}}} \right) = \left( { \dfrac{1}{{ x \log x}}} \right)\left( {2 \log \left( { \log x} \right) + 1} \right)\]
Further evaluating the above terms, we get
\[\left( { \dfrac{{dy}}{{dx}}} \right) = \left[ { \dfrac{{y \log y}}{{ x \log x}}} \right]\left[ {2 \log \left( { \log x} \right) + 1} \right]\]
Hence option D is the correct option.
Note:
One should apply the properties of log with uttermost care. Also, the differentiation of the Right-hand side and left-hand side can be done separately to eliminate any confusion. This problem can also be solved by rearranging the term \[y = {\left( {x \log x} \right)^{ \log \log x}}\]to \[ \dfrac{y}{x} = {\left( { \log x} \right)^{ \log \log x}}\]and then taking exponential function on both side of the equation.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Equation of Trajectory in Projectile Motion: Derivation & Proof

Atomic Structure: Definition, Models, and Examples

Hybridisation in Chemistry – Concept, Types & Applications

Angle of Deviation in a Prism – Formula, Diagram & Applications

Collision: Meaning, Types & Examples in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 6 Permutations And Combinations

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions for Class 11 Maths Chapter 7 Binomial Theorem

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
