
If \[xy=a{{x}^{2}}+\left( \dfrac{b}{x} \right)\], then find the value of \[x\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+2\dfrac{dy}{dx}=\]
(A) \[\dfrac{y}{x}\] (B) \[\dfrac{-y}{x}\]
(C) \[\dfrac{2y}{x}\] (D) \[\dfrac{-2y}{x}\]
Answer
232.8k+ views
Hint: Carefully examine the given equation and try to convert it such that LHS just has $y$ term. In this way it will be easy for us to find the first and second derivative and substitute it in the final equation to calculate.
The given expression is \[xy=a{{x}^{2}}+\left( \dfrac{b}{x} \right)\]
We need to find, \[x\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+2\dfrac{dy}{dx}.\]
For this problem first let us find \[\dfrac{dy}{dx}\]and \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\].
So, consider the given expression,\[xy=a{{x}^{2}}+\left( \dfrac{b}{x} \right)\]
Dividing with $'x'$ on both sides, we get
\[\dfrac{xy}{x}=\dfrac{a{{x}^{2}}}{x}+\dfrac{\dfrac{b}{x}}{x}\]
Cancelling the like terms, we get
\[\Rightarrow y=ax+\dfrac{b}{{{x}^{2}}}=ax+b{{x}^{-2}}\]
Now, by differentiating both sides with respect to\[x\], we get
\[\dfrac{dy}{dx}=\dfrac{d}{dx}(ax)+\dfrac{d}{dx}(b{{x}^{-2}})\]
Taking out the constant terms, we get
\[\dfrac{dy}{dx}=a\dfrac{d}{dx}(x)+b\dfrac{d}{dx}({{x}^{-2}})\]
Now we know, \[\dfrac{d\left( {{x}^{n}} \right)}{dx}=n\left( {{x}^{n-1}} \right)\] , so the above equation becomes
\[\begin{align}
& \dfrac{dy}{dx}=a(1)+b\left( -2{{x}^{-2-1}} \right) \\
& \dfrac{dy}{dx}=a+b(-2{{x}^{-3}}) \\
\end{align}\]
\[\dfrac{dy}{dx}=a-2b{{x}^{-3}}............(i)\]
Now we find the second derivative.
Let us differentiate both sides of equation (i) with respect to $'x'$, we get
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( a-2b{{x}^{-3}} \right)\]
This can be written as,
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( a \right)-\dfrac{d}{dx}\left( 2b{{x}^{-3}} \right)\]
We know differentiation of constant term is zero and taking out the constant terms, we get\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=0-2b\dfrac{d}{dx}\left( {{x}^{-3}} \right)\]
Now we know, \[\dfrac{d\left( {{x}^{n}} \right)}{dx}=n\left( {{x}^{n-1}} \right)\] , so the above equation becomes
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-2b\left( -3{{x}^{-3-1}} \right)\]
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=6b{{x}^{-4}}.............(ii)\]
Now consider the other equation,
\[x\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+2\dfrac{dy}{dx}=\]
Now by substituting values from equation (i) and (ii), we get
\[x\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+2\dfrac{dy}{dx}=x\left( 6b{{x}^{-4}} \right)+2\left( a-2b{{x}^{-3}} \right)\]
\[\begin{align}
& x\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+2\dfrac{dy}{dx}=6b{{x}^{-3}}+2a-4b{{x}^{-3}} \\
& x\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+2\dfrac{dy}{dx}=2a+2b{{x}^{-3}} \\
& x\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+2\dfrac{dy}{dx}=2\left( a+\dfrac{b}{{{x}^{3}}} \right) \\
\end{align}\]
Now by multiplying and dividing with \[\left( {{x}^{2}} \right)\] on RHS we get,
\[\begin{align}
& x\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+2\dfrac{dy}{dx}=2\left[ a+\dfrac{b}{{{x}^{3}}} \right]\times \dfrac{{{x}^{2}}}{{{x}^{2}}} \\
& x\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+2\dfrac{dy}{dx}=2\left[ ax{}^{2}+\dfrac{b{{x}^{2}}}{{{x}^{3}}} \right]\times \dfrac{1}{{{x}^{2}}} \\
& x\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+2\dfrac{dy}{dx}=2\left[ a{{x}^{2}}+\dfrac{b}{x} \right]\dfrac{1}{{{x}^{2}}} \\
\end{align}\]
But given, \[xy=a{{x}^{2}}+\left( \dfrac{b}{x} \right)\], so the above equation becomes,
\[x\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+2\dfrac{dy}{dx}=2\left( xy \right)\dfrac{1}{{{x}^{2}}}\]
Cancelling the like terms, we get
\[x\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+2\dfrac{dy}{dx}=2\dfrac{y}{x}\]
Hence the correct answer is option (C).
Note: Another way to solve this problem is directly differentiating the given expression with respect to $x$ instead of dividing the expression by $x$ .
\[\dfrac{d(xy)}{dx}=\dfrac{d}{dx}\left( a{{x}^{2}}+\left( \dfrac{b}{x} \right) \right)\]
Now we will apply product rule, so we get
\[x\dfrac{d(y)}{dx}+y\dfrac{d(x)}{dy}=\dfrac{d}{dx}\left( a{{x}^{2}} \right)+\dfrac{d}{dx}\left( \dfrac{b}{x} \right)\]
This gets a little complicated. But you will get the same answer.
The given expression is \[xy=a{{x}^{2}}+\left( \dfrac{b}{x} \right)\]
We need to find, \[x\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+2\dfrac{dy}{dx}.\]
For this problem first let us find \[\dfrac{dy}{dx}\]and \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\].
So, consider the given expression,\[xy=a{{x}^{2}}+\left( \dfrac{b}{x} \right)\]
Dividing with $'x'$ on both sides, we get
\[\dfrac{xy}{x}=\dfrac{a{{x}^{2}}}{x}+\dfrac{\dfrac{b}{x}}{x}\]
Cancelling the like terms, we get
\[\Rightarrow y=ax+\dfrac{b}{{{x}^{2}}}=ax+b{{x}^{-2}}\]
Now, by differentiating both sides with respect to\[x\], we get
\[\dfrac{dy}{dx}=\dfrac{d}{dx}(ax)+\dfrac{d}{dx}(b{{x}^{-2}})\]
Taking out the constant terms, we get
\[\dfrac{dy}{dx}=a\dfrac{d}{dx}(x)+b\dfrac{d}{dx}({{x}^{-2}})\]
Now we know, \[\dfrac{d\left( {{x}^{n}} \right)}{dx}=n\left( {{x}^{n-1}} \right)\] , so the above equation becomes
\[\begin{align}
& \dfrac{dy}{dx}=a(1)+b\left( -2{{x}^{-2-1}} \right) \\
& \dfrac{dy}{dx}=a+b(-2{{x}^{-3}}) \\
\end{align}\]
\[\dfrac{dy}{dx}=a-2b{{x}^{-3}}............(i)\]
Now we find the second derivative.
Let us differentiate both sides of equation (i) with respect to $'x'$, we get
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( a-2b{{x}^{-3}} \right)\]
This can be written as,
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( a \right)-\dfrac{d}{dx}\left( 2b{{x}^{-3}} \right)\]
We know differentiation of constant term is zero and taking out the constant terms, we get\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=0-2b\dfrac{d}{dx}\left( {{x}^{-3}} \right)\]
Now we know, \[\dfrac{d\left( {{x}^{n}} \right)}{dx}=n\left( {{x}^{n-1}} \right)\] , so the above equation becomes
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-2b\left( -3{{x}^{-3-1}} \right)\]
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=6b{{x}^{-4}}.............(ii)\]
Now consider the other equation,
\[x\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+2\dfrac{dy}{dx}=\]
Now by substituting values from equation (i) and (ii), we get
\[x\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+2\dfrac{dy}{dx}=x\left( 6b{{x}^{-4}} \right)+2\left( a-2b{{x}^{-3}} \right)\]
\[\begin{align}
& x\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+2\dfrac{dy}{dx}=6b{{x}^{-3}}+2a-4b{{x}^{-3}} \\
& x\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+2\dfrac{dy}{dx}=2a+2b{{x}^{-3}} \\
& x\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+2\dfrac{dy}{dx}=2\left( a+\dfrac{b}{{{x}^{3}}} \right) \\
\end{align}\]
Now by multiplying and dividing with \[\left( {{x}^{2}} \right)\] on RHS we get,
\[\begin{align}
& x\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+2\dfrac{dy}{dx}=2\left[ a+\dfrac{b}{{{x}^{3}}} \right]\times \dfrac{{{x}^{2}}}{{{x}^{2}}} \\
& x\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+2\dfrac{dy}{dx}=2\left[ ax{}^{2}+\dfrac{b{{x}^{2}}}{{{x}^{3}}} \right]\times \dfrac{1}{{{x}^{2}}} \\
& x\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+2\dfrac{dy}{dx}=2\left[ a{{x}^{2}}+\dfrac{b}{x} \right]\dfrac{1}{{{x}^{2}}} \\
\end{align}\]
But given, \[xy=a{{x}^{2}}+\left( \dfrac{b}{x} \right)\], so the above equation becomes,
\[x\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+2\dfrac{dy}{dx}=2\left( xy \right)\dfrac{1}{{{x}^{2}}}\]
Cancelling the like terms, we get
\[x\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+2\dfrac{dy}{dx}=2\dfrac{y}{x}\]
Hence the correct answer is option (C).
Note: Another way to solve this problem is directly differentiating the given expression with respect to $x$ instead of dividing the expression by $x$ .
\[\dfrac{d(xy)}{dx}=\dfrac{d}{dx}\left( a{{x}^{2}}+\left( \dfrac{b}{x} \right) \right)\]
Now we will apply product rule, so we get
\[x\dfrac{d(y)}{dx}+y\dfrac{d(x)}{dy}=\dfrac{d}{dx}\left( a{{x}^{2}} \right)+\dfrac{d}{dx}\left( \dfrac{b}{x} \right)\]
This gets a little complicated. But you will get the same answer.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

