
If $X = \left[ {\begin{array}{*{20}{c}}
3&{ - 4} \\
1&{ - 1}
\end{array}} \right]$ , then what is the value of ${X^n}$ ?
A. $\left[ {\begin{array}{*{20}{c}}
{3n}&{ - 4n} \\
n&{ - n}
\end{array}} \right]$
B. $\left[ {\begin{array}{*{20}{c}}
{2 + n}&{5 - n} \\
n&{ - n}
\end{array}} \right]$
C. $\left[ {\begin{array}{*{20}{c}}
{{3^n}}&{{{\left( { - 4} \right)}^n}} \\
{{1^n}}&{{{\left( { - 1} \right)}^n}}
\end{array}} \right]$
D. None of these
Answer
232.8k+ views
Hint: To evaluate any power of the matrix, matrix multiplication is performed over that matrix again and again, as per the power. For example, ${A^2} = AA$ and ${A^3} = AAA$ , where $A$ is a square matrix.
Complete step by step Solution:
Given is matrix $X$ such that:
$X = \left[ {\begin{array}{*{20}{c}}
3&{ - 4} \\
1&{ - 1}
\end{array}} \right]$
The question is asking us to evaluate the value of ${X^n}$.
Let us evaluate it for $n = 2$, that is, let’s evaluate ${X^2}$ and compare our result with each option.
${X^2} = XX$
Substituting the value of $X$,
${X^2} = \left[ {\begin{array}{*{20}{c}}
3&{ - 4} \\
1&{ - 1}
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
3&{ - 4} \\
1&{ - 1}
\end{array}} \right]$
Performing Matrix Multiplication,
\[{X^2} = \left[ {\begin{array}{*{20}{c}}
{3 \times 3 + \left( { - 4} \right) \times 1}&{3 \times \left( { - 4} \right) + \left( { - 4} \right) \times \left( { - 1} \right)} \\
{1 \times 3 + \left( { - 1} \right) \times 1}&{1 \times \left( { - 4} \right) + \left( { - 1} \right) \times \left( { - 1} \right)}
\end{array}} \right]\]
On simplifying further, we get:
\[{X^2} = \left[ {\begin{array}{*{20}{c}}
5&{ - 8} \\
2&{ - 3}
\end{array}} \right]\] … (1)
Now, let us evaluate the value of each option for $n = 2$ and compare it with the result obtained in (1),
For option A:
$\left[ {\begin{array}{*{20}{c}}
{3n}&{ - 4n} \\
n&{ - n}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{3\left( 2 \right)}&{ - 4\left( 2 \right)} \\
{\left( 2 \right)}&{ - \left( 2 \right)}
\end{array}} \right]$
Simplifying further, we get:
$\left[ {\begin{array}{*{20}{c}}
{3n}&{ - 4n} \\
n&{ - n}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
6&{ - 8} \\
2&{ - 2}
\end{array}} \right] \ne \left[ {\begin{array}{*{20}{c}}
5&{ - 8} \\
2&{ - 3}
\end{array}} \right] = {X^2}$
For option B:
$\left[ {\begin{array}{*{20}{c}}
{2 + n}&{5 - n} \\
n&{ - n}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{2 + 2}&{5 - 2} \\
2&{ - 2}
\end{array}} \right]$
Simplifying further, we get:
$\left[ {\begin{array}{*{20}{c}}
{2 + n}&{5 - n} \\
n&{ - n}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
4&3 \\
2&{ - 2}
\end{array}} \right] \ne \left[ {\begin{array}{*{20}{c}}
5&{ - 8} \\
2&{ - 3}
\end{array}} \right] = {X^2}$
For option C:
$\left[ {\begin{array}{*{20}{c}}
{{3^n}}&{{{\left( { - 4} \right)}^n}} \\
{{1^n}}&{{{\left( { - 1} \right)}^n}}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{{3^2}}&{{{\left( { - 4} \right)}^2}} \\
{{1^2}}&{{{\left( { - 1} \right)}^2}}
\end{array}} \right]$
Simplifying further, we get:
$\left[ {\begin{array}{*{20}{c}}
{{3^n}}&{{{\left( { - 4} \right)}^n}} \\
{{1^n}}&{{{\left( { - 1} \right)}^n}}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
9&{16} \\
1&1
\end{array}} \right] \ne \left[ {\begin{array}{*{20}{c}}
5&{ - 8} \\
2&{ - 3}
\end{array}} \right] = {X^2}$
This means that none of the options will provide the value of ${X^n}$, for any value of $n$.
Therefore, the correct option is (D).
Note: To evaluate the value of a matrix, raised to a power, matrix multiplication is performed on the matrix over and over again till the power is obtained, that is, for a square matrix, $A$, ${A^n} = A \times A \times A \ldots n{\text{ times}}$.
Complete step by step Solution:
Given is matrix $X$ such that:
$X = \left[ {\begin{array}{*{20}{c}}
3&{ - 4} \\
1&{ - 1}
\end{array}} \right]$
The question is asking us to evaluate the value of ${X^n}$.
Let us evaluate it for $n = 2$, that is, let’s evaluate ${X^2}$ and compare our result with each option.
${X^2} = XX$
Substituting the value of $X$,
${X^2} = \left[ {\begin{array}{*{20}{c}}
3&{ - 4} \\
1&{ - 1}
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
3&{ - 4} \\
1&{ - 1}
\end{array}} \right]$
Performing Matrix Multiplication,
\[{X^2} = \left[ {\begin{array}{*{20}{c}}
{3 \times 3 + \left( { - 4} \right) \times 1}&{3 \times \left( { - 4} \right) + \left( { - 4} \right) \times \left( { - 1} \right)} \\
{1 \times 3 + \left( { - 1} \right) \times 1}&{1 \times \left( { - 4} \right) + \left( { - 1} \right) \times \left( { - 1} \right)}
\end{array}} \right]\]
On simplifying further, we get:
\[{X^2} = \left[ {\begin{array}{*{20}{c}}
5&{ - 8} \\
2&{ - 3}
\end{array}} \right]\] … (1)
Now, let us evaluate the value of each option for $n = 2$ and compare it with the result obtained in (1),
For option A:
$\left[ {\begin{array}{*{20}{c}}
{3n}&{ - 4n} \\
n&{ - n}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{3\left( 2 \right)}&{ - 4\left( 2 \right)} \\
{\left( 2 \right)}&{ - \left( 2 \right)}
\end{array}} \right]$
Simplifying further, we get:
$\left[ {\begin{array}{*{20}{c}}
{3n}&{ - 4n} \\
n&{ - n}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
6&{ - 8} \\
2&{ - 2}
\end{array}} \right] \ne \left[ {\begin{array}{*{20}{c}}
5&{ - 8} \\
2&{ - 3}
\end{array}} \right] = {X^2}$
For option B:
$\left[ {\begin{array}{*{20}{c}}
{2 + n}&{5 - n} \\
n&{ - n}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{2 + 2}&{5 - 2} \\
2&{ - 2}
\end{array}} \right]$
Simplifying further, we get:
$\left[ {\begin{array}{*{20}{c}}
{2 + n}&{5 - n} \\
n&{ - n}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
4&3 \\
2&{ - 2}
\end{array}} \right] \ne \left[ {\begin{array}{*{20}{c}}
5&{ - 8} \\
2&{ - 3}
\end{array}} \right] = {X^2}$
For option C:
$\left[ {\begin{array}{*{20}{c}}
{{3^n}}&{{{\left( { - 4} \right)}^n}} \\
{{1^n}}&{{{\left( { - 1} \right)}^n}}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{{3^2}}&{{{\left( { - 4} \right)}^2}} \\
{{1^2}}&{{{\left( { - 1} \right)}^2}}
\end{array}} \right]$
Simplifying further, we get:
$\left[ {\begin{array}{*{20}{c}}
{{3^n}}&{{{\left( { - 4} \right)}^n}} \\
{{1^n}}&{{{\left( { - 1} \right)}^n}}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
9&{16} \\
1&1
\end{array}} \right] \ne \left[ {\begin{array}{*{20}{c}}
5&{ - 8} \\
2&{ - 3}
\end{array}} \right] = {X^2}$
This means that none of the options will provide the value of ${X^n}$, for any value of $n$.
Therefore, the correct option is (D).
Note: To evaluate the value of a matrix, raised to a power, matrix multiplication is performed on the matrix over and over again till the power is obtained, that is, for a square matrix, $A$, ${A^n} = A \times A \times A \ldots n{\text{ times}}$.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

