
If $X = \left[ {\begin{array}{*{20}{c}}
3&{ - 4} \\
1&{ - 1}
\end{array}} \right]$ , then what is the value of ${X^n}$ ?
A. $\left[ {\begin{array}{*{20}{c}}
{3n}&{ - 4n} \\
n&{ - n}
\end{array}} \right]$
B. $\left[ {\begin{array}{*{20}{c}}
{2 + n}&{5 - n} \\
n&{ - n}
\end{array}} \right]$
C. $\left[ {\begin{array}{*{20}{c}}
{{3^n}}&{{{\left( { - 4} \right)}^n}} \\
{{1^n}}&{{{\left( { - 1} \right)}^n}}
\end{array}} \right]$
D. None of these
Answer
216k+ views
Hint: To evaluate any power of the matrix, matrix multiplication is performed over that matrix again and again, as per the power. For example, ${A^2} = AA$ and ${A^3} = AAA$ , where $A$ is a square matrix.
Complete step by step Solution:
Given is matrix $X$ such that:
$X = \left[ {\begin{array}{*{20}{c}}
3&{ - 4} \\
1&{ - 1}
\end{array}} \right]$
The question is asking us to evaluate the value of ${X^n}$.
Let us evaluate it for $n = 2$, that is, let’s evaluate ${X^2}$ and compare our result with each option.
${X^2} = XX$
Substituting the value of $X$,
${X^2} = \left[ {\begin{array}{*{20}{c}}
3&{ - 4} \\
1&{ - 1}
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
3&{ - 4} \\
1&{ - 1}
\end{array}} \right]$
Performing Matrix Multiplication,
\[{X^2} = \left[ {\begin{array}{*{20}{c}}
{3 \times 3 + \left( { - 4} \right) \times 1}&{3 \times \left( { - 4} \right) + \left( { - 4} \right) \times \left( { - 1} \right)} \\
{1 \times 3 + \left( { - 1} \right) \times 1}&{1 \times \left( { - 4} \right) + \left( { - 1} \right) \times \left( { - 1} \right)}
\end{array}} \right]\]
On simplifying further, we get:
\[{X^2} = \left[ {\begin{array}{*{20}{c}}
5&{ - 8} \\
2&{ - 3}
\end{array}} \right]\] … (1)
Now, let us evaluate the value of each option for $n = 2$ and compare it with the result obtained in (1),
For option A:
$\left[ {\begin{array}{*{20}{c}}
{3n}&{ - 4n} \\
n&{ - n}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{3\left( 2 \right)}&{ - 4\left( 2 \right)} \\
{\left( 2 \right)}&{ - \left( 2 \right)}
\end{array}} \right]$
Simplifying further, we get:
$\left[ {\begin{array}{*{20}{c}}
{3n}&{ - 4n} \\
n&{ - n}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
6&{ - 8} \\
2&{ - 2}
\end{array}} \right] \ne \left[ {\begin{array}{*{20}{c}}
5&{ - 8} \\
2&{ - 3}
\end{array}} \right] = {X^2}$
For option B:
$\left[ {\begin{array}{*{20}{c}}
{2 + n}&{5 - n} \\
n&{ - n}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{2 + 2}&{5 - 2} \\
2&{ - 2}
\end{array}} \right]$
Simplifying further, we get:
$\left[ {\begin{array}{*{20}{c}}
{2 + n}&{5 - n} \\
n&{ - n}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
4&3 \\
2&{ - 2}
\end{array}} \right] \ne \left[ {\begin{array}{*{20}{c}}
5&{ - 8} \\
2&{ - 3}
\end{array}} \right] = {X^2}$
For option C:
$\left[ {\begin{array}{*{20}{c}}
{{3^n}}&{{{\left( { - 4} \right)}^n}} \\
{{1^n}}&{{{\left( { - 1} \right)}^n}}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{{3^2}}&{{{\left( { - 4} \right)}^2}} \\
{{1^2}}&{{{\left( { - 1} \right)}^2}}
\end{array}} \right]$
Simplifying further, we get:
$\left[ {\begin{array}{*{20}{c}}
{{3^n}}&{{{\left( { - 4} \right)}^n}} \\
{{1^n}}&{{{\left( { - 1} \right)}^n}}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
9&{16} \\
1&1
\end{array}} \right] \ne \left[ {\begin{array}{*{20}{c}}
5&{ - 8} \\
2&{ - 3}
\end{array}} \right] = {X^2}$
This means that none of the options will provide the value of ${X^n}$, for any value of $n$.
Therefore, the correct option is (D).
Note: To evaluate the value of a matrix, raised to a power, matrix multiplication is performed on the matrix over and over again till the power is obtained, that is, for a square matrix, $A$, ${A^n} = A \times A \times A \ldots n{\text{ times}}$.
Complete step by step Solution:
Given is matrix $X$ such that:
$X = \left[ {\begin{array}{*{20}{c}}
3&{ - 4} \\
1&{ - 1}
\end{array}} \right]$
The question is asking us to evaluate the value of ${X^n}$.
Let us evaluate it for $n = 2$, that is, let’s evaluate ${X^2}$ and compare our result with each option.
${X^2} = XX$
Substituting the value of $X$,
${X^2} = \left[ {\begin{array}{*{20}{c}}
3&{ - 4} \\
1&{ - 1}
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
3&{ - 4} \\
1&{ - 1}
\end{array}} \right]$
Performing Matrix Multiplication,
\[{X^2} = \left[ {\begin{array}{*{20}{c}}
{3 \times 3 + \left( { - 4} \right) \times 1}&{3 \times \left( { - 4} \right) + \left( { - 4} \right) \times \left( { - 1} \right)} \\
{1 \times 3 + \left( { - 1} \right) \times 1}&{1 \times \left( { - 4} \right) + \left( { - 1} \right) \times \left( { - 1} \right)}
\end{array}} \right]\]
On simplifying further, we get:
\[{X^2} = \left[ {\begin{array}{*{20}{c}}
5&{ - 8} \\
2&{ - 3}
\end{array}} \right]\] … (1)
Now, let us evaluate the value of each option for $n = 2$ and compare it with the result obtained in (1),
For option A:
$\left[ {\begin{array}{*{20}{c}}
{3n}&{ - 4n} \\
n&{ - n}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{3\left( 2 \right)}&{ - 4\left( 2 \right)} \\
{\left( 2 \right)}&{ - \left( 2 \right)}
\end{array}} \right]$
Simplifying further, we get:
$\left[ {\begin{array}{*{20}{c}}
{3n}&{ - 4n} \\
n&{ - n}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
6&{ - 8} \\
2&{ - 2}
\end{array}} \right] \ne \left[ {\begin{array}{*{20}{c}}
5&{ - 8} \\
2&{ - 3}
\end{array}} \right] = {X^2}$
For option B:
$\left[ {\begin{array}{*{20}{c}}
{2 + n}&{5 - n} \\
n&{ - n}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{2 + 2}&{5 - 2} \\
2&{ - 2}
\end{array}} \right]$
Simplifying further, we get:
$\left[ {\begin{array}{*{20}{c}}
{2 + n}&{5 - n} \\
n&{ - n}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
4&3 \\
2&{ - 2}
\end{array}} \right] \ne \left[ {\begin{array}{*{20}{c}}
5&{ - 8} \\
2&{ - 3}
\end{array}} \right] = {X^2}$
For option C:
$\left[ {\begin{array}{*{20}{c}}
{{3^n}}&{{{\left( { - 4} \right)}^n}} \\
{{1^n}}&{{{\left( { - 1} \right)}^n}}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{{3^2}}&{{{\left( { - 4} \right)}^2}} \\
{{1^2}}&{{{\left( { - 1} \right)}^2}}
\end{array}} \right]$
Simplifying further, we get:
$\left[ {\begin{array}{*{20}{c}}
{{3^n}}&{{{\left( { - 4} \right)}^n}} \\
{{1^n}}&{{{\left( { - 1} \right)}^n}}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
9&{16} \\
1&1
\end{array}} \right] \ne \left[ {\begin{array}{*{20}{c}}
5&{ - 8} \\
2&{ - 3}
\end{array}} \right] = {X^2}$
This means that none of the options will provide the value of ${X^n}$, for any value of $n$.
Therefore, the correct option is (D).
Note: To evaluate the value of a matrix, raised to a power, matrix multiplication is performed on the matrix over and over again till the power is obtained, that is, for a square matrix, $A$, ${A^n} = A \times A \times A \ldots n{\text{ times}}$.
Recently Updated Pages
Alpha, Beta, and Gamma Decay Explained

Alpha Particle Scattering and Rutherford Model Explained

Angular Momentum of a Rotating Body: Definition & Formula

Apparent Frequency Explained: Formula, Uses & Examples

Applications of Echo in Daily Life and Science

Average and RMS Value Explained: Formulas & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

