
If $X = \left[ {\begin{array}{*{20}{c}}
3&{ - 4} \\
1&{ - 1}
\end{array}} \right]$ , then what is the value of ${X^n}$ ?
A. $\left[ {\begin{array}{*{20}{c}}
{3n}&{ - 4n} \\
n&{ - n}
\end{array}} \right]$
B. $\left[ {\begin{array}{*{20}{c}}
{2 + n}&{5 - n} \\
n&{ - n}
\end{array}} \right]$
C. $\left[ {\begin{array}{*{20}{c}}
{{3^n}}&{{{\left( { - 4} \right)}^n}} \\
{{1^n}}&{{{\left( { - 1} \right)}^n}}
\end{array}} \right]$
D. None of these
Answer
164.1k+ views
Hint: To evaluate any power of the matrix, matrix multiplication is performed over that matrix again and again, as per the power. For example, ${A^2} = AA$ and ${A^3} = AAA$ , where $A$ is a square matrix.
Complete step by step Solution:
Given is matrix $X$ such that:
$X = \left[ {\begin{array}{*{20}{c}}
3&{ - 4} \\
1&{ - 1}
\end{array}} \right]$
The question is asking us to evaluate the value of ${X^n}$.
Let us evaluate it for $n = 2$, that is, let’s evaluate ${X^2}$ and compare our result with each option.
${X^2} = XX$
Substituting the value of $X$,
${X^2} = \left[ {\begin{array}{*{20}{c}}
3&{ - 4} \\
1&{ - 1}
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
3&{ - 4} \\
1&{ - 1}
\end{array}} \right]$
Performing Matrix Multiplication,
\[{X^2} = \left[ {\begin{array}{*{20}{c}}
{3 \times 3 + \left( { - 4} \right) \times 1}&{3 \times \left( { - 4} \right) + \left( { - 4} \right) \times \left( { - 1} \right)} \\
{1 \times 3 + \left( { - 1} \right) \times 1}&{1 \times \left( { - 4} \right) + \left( { - 1} \right) \times \left( { - 1} \right)}
\end{array}} \right]\]
On simplifying further, we get:
\[{X^2} = \left[ {\begin{array}{*{20}{c}}
5&{ - 8} \\
2&{ - 3}
\end{array}} \right]\] … (1)
Now, let us evaluate the value of each option for $n = 2$ and compare it with the result obtained in (1),
For option A:
$\left[ {\begin{array}{*{20}{c}}
{3n}&{ - 4n} \\
n&{ - n}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{3\left( 2 \right)}&{ - 4\left( 2 \right)} \\
{\left( 2 \right)}&{ - \left( 2 \right)}
\end{array}} \right]$
Simplifying further, we get:
$\left[ {\begin{array}{*{20}{c}}
{3n}&{ - 4n} \\
n&{ - n}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
6&{ - 8} \\
2&{ - 2}
\end{array}} \right] \ne \left[ {\begin{array}{*{20}{c}}
5&{ - 8} \\
2&{ - 3}
\end{array}} \right] = {X^2}$
For option B:
$\left[ {\begin{array}{*{20}{c}}
{2 + n}&{5 - n} \\
n&{ - n}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{2 + 2}&{5 - 2} \\
2&{ - 2}
\end{array}} \right]$
Simplifying further, we get:
$\left[ {\begin{array}{*{20}{c}}
{2 + n}&{5 - n} \\
n&{ - n}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
4&3 \\
2&{ - 2}
\end{array}} \right] \ne \left[ {\begin{array}{*{20}{c}}
5&{ - 8} \\
2&{ - 3}
\end{array}} \right] = {X^2}$
For option C:
$\left[ {\begin{array}{*{20}{c}}
{{3^n}}&{{{\left( { - 4} \right)}^n}} \\
{{1^n}}&{{{\left( { - 1} \right)}^n}}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{{3^2}}&{{{\left( { - 4} \right)}^2}} \\
{{1^2}}&{{{\left( { - 1} \right)}^2}}
\end{array}} \right]$
Simplifying further, we get:
$\left[ {\begin{array}{*{20}{c}}
{{3^n}}&{{{\left( { - 4} \right)}^n}} \\
{{1^n}}&{{{\left( { - 1} \right)}^n}}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
9&{16} \\
1&1
\end{array}} \right] \ne \left[ {\begin{array}{*{20}{c}}
5&{ - 8} \\
2&{ - 3}
\end{array}} \right] = {X^2}$
This means that none of the options will provide the value of ${X^n}$, for any value of $n$.
Therefore, the correct option is (D).
Note: To evaluate the value of a matrix, raised to a power, matrix multiplication is performed on the matrix over and over again till the power is obtained, that is, for a square matrix, $A$, ${A^n} = A \times A \times A \ldots n{\text{ times}}$.
Complete step by step Solution:
Given is matrix $X$ such that:
$X = \left[ {\begin{array}{*{20}{c}}
3&{ - 4} \\
1&{ - 1}
\end{array}} \right]$
The question is asking us to evaluate the value of ${X^n}$.
Let us evaluate it for $n = 2$, that is, let’s evaluate ${X^2}$ and compare our result with each option.
${X^2} = XX$
Substituting the value of $X$,
${X^2} = \left[ {\begin{array}{*{20}{c}}
3&{ - 4} \\
1&{ - 1}
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
3&{ - 4} \\
1&{ - 1}
\end{array}} \right]$
Performing Matrix Multiplication,
\[{X^2} = \left[ {\begin{array}{*{20}{c}}
{3 \times 3 + \left( { - 4} \right) \times 1}&{3 \times \left( { - 4} \right) + \left( { - 4} \right) \times \left( { - 1} \right)} \\
{1 \times 3 + \left( { - 1} \right) \times 1}&{1 \times \left( { - 4} \right) + \left( { - 1} \right) \times \left( { - 1} \right)}
\end{array}} \right]\]
On simplifying further, we get:
\[{X^2} = \left[ {\begin{array}{*{20}{c}}
5&{ - 8} \\
2&{ - 3}
\end{array}} \right]\] … (1)
Now, let us evaluate the value of each option for $n = 2$ and compare it with the result obtained in (1),
For option A:
$\left[ {\begin{array}{*{20}{c}}
{3n}&{ - 4n} \\
n&{ - n}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{3\left( 2 \right)}&{ - 4\left( 2 \right)} \\
{\left( 2 \right)}&{ - \left( 2 \right)}
\end{array}} \right]$
Simplifying further, we get:
$\left[ {\begin{array}{*{20}{c}}
{3n}&{ - 4n} \\
n&{ - n}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
6&{ - 8} \\
2&{ - 2}
\end{array}} \right] \ne \left[ {\begin{array}{*{20}{c}}
5&{ - 8} \\
2&{ - 3}
\end{array}} \right] = {X^2}$
For option B:
$\left[ {\begin{array}{*{20}{c}}
{2 + n}&{5 - n} \\
n&{ - n}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{2 + 2}&{5 - 2} \\
2&{ - 2}
\end{array}} \right]$
Simplifying further, we get:
$\left[ {\begin{array}{*{20}{c}}
{2 + n}&{5 - n} \\
n&{ - n}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
4&3 \\
2&{ - 2}
\end{array}} \right] \ne \left[ {\begin{array}{*{20}{c}}
5&{ - 8} \\
2&{ - 3}
\end{array}} \right] = {X^2}$
For option C:
$\left[ {\begin{array}{*{20}{c}}
{{3^n}}&{{{\left( { - 4} \right)}^n}} \\
{{1^n}}&{{{\left( { - 1} \right)}^n}}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{{3^2}}&{{{\left( { - 4} \right)}^2}} \\
{{1^2}}&{{{\left( { - 1} \right)}^2}}
\end{array}} \right]$
Simplifying further, we get:
$\left[ {\begin{array}{*{20}{c}}
{{3^n}}&{{{\left( { - 4} \right)}^n}} \\
{{1^n}}&{{{\left( { - 1} \right)}^n}}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
9&{16} \\
1&1
\end{array}} \right] \ne \left[ {\begin{array}{*{20}{c}}
5&{ - 8} \\
2&{ - 3}
\end{array}} \right] = {X^2}$
This means that none of the options will provide the value of ${X^n}$, for any value of $n$.
Therefore, the correct option is (D).
Note: To evaluate the value of a matrix, raised to a power, matrix multiplication is performed on the matrix over and over again till the power is obtained, that is, for a square matrix, $A$, ${A^n} = A \times A \times A \ldots n{\text{ times}}$.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

JEE Mains 2025 Cut-Off GFIT: Check All Rounds Cutoff Ranks

Lami's Theorem

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
