
If $\vec u,\vec v,$and $\vec w$ are non-coplanar vectors and, $p$and $q$are real numbers, then the equality $\left[ {\begin{array}{*{20}{c}}
{3\vec u}&{p\vec v}&{p\vec w}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{p\vec v}&{\vec w}&{q\vec u}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{2\vec w}&{q\vec v}&{q\vec u}
\end{array}} \right] = 0$ holds for:
a) Exactly two values of $(p,q)$.
b) More than two but not all values of $(p,q)$.
c) All values of $(p,q)$.
d) Exactly one value of $(p,q)$.
Answer
164.1k+ views
Hint: The given equality $\left[ {\begin{array}{*{20}{c}}
{3\vec u}&{p\vec v}&{p\vec w}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{p\vec v}&{\vec w}&{q\vec u}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{2\vec w}&{q\vec v}&{q\vec u}
\end{array}} \right] = 0$ is an equation consisting of scalar product. To solve this question we will use basic definition of scalar product i.e. \[\left[ {\begin{array}{*{20}{c}}
{\vec a}&{\vec b}&{\vec c}
\end{array}} \right] = \vec a.\left( {\vec b \times \vec c} \right)\] for any three vectors and properties of the scalar triple product.
Formula Used:
Three vectors are said to be non-coplanar if their support lines are not parallel to the same plane or they cannot be expressed as$\overrightarrow R = x\overrightarrow A + y\overrightarrow B + z\overrightarrow C $. Expanding the cross product of the expression, $(A + B + C) \cdot \left[ {A \times A + A \times C + B \times A + B \times C} \right]$by using identity $A \times A = 0$.
Complete step by step Solution:
In the question, the equality $\left[ {\begin{array}{*{20}{c}}
{3\vec u}&{p\vec v}&{p\vec w}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{p\vec v}&{\vec w}&{q\vec u}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{2\vec w}&{q\vec v}&{q\vec u}
\end{array}} \right] = 0$is given,
Before solving the given equation, we need to simplify the given equation using the properties of the scalar triple product. Few properties will be used here are listed below:
1. $\left[ {\begin{array}{*{20}{c}}
{\vec a}&{\vec b}&{\vec c}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\vec b}&{\vec c}&{\vec a}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\vec c}&{\vec a}&{\vec b}
\end{array}} \right]$
2. $\left[ {\begin{array}{*{20}{c}}
{\vec a}&{\vec b}&{\vec c}
\end{array}} \right] = - \left[ {\begin{array}{*{20}{c}}
{\vec b}&{\vec a}&{\vec c}
\end{array}} \right] = - \left[ {\begin{array}{*{20}{c}}
{\vec c}&{\vec b}&{\vec a}
\end{array}} \right]$
3. Scalar multiplication:$\left[ {\begin{array}{*{20}{c}}
{{k_1}\vec a}&{\vec b}&{\vec c}
\end{array}} \right] = {k_1}\left[ {\begin{array}{*{20}{c}}
{\vec a}&{\vec b}&{\vec c}
\end{array}} \right]$ where ${k_1}$is a scalar.
Consider the given equation, then we have:
$\left[ {\begin{array}{*{20}{c}}
{3\vec u}&{p\vec v}&{p\vec w}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{p\vec v}&{\vec w}&{q\vec u}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{2\vec w}&{q\vec v}&{q\vec u}
\end{array}} \right] = 0$
Using property $(3)$, we can simplify the given equation in the form below;
$3{p^2}\left[ {\begin{array}{*{20}{c}}
{\vec u}&{\vec v}&{\vec w}
\end{array}} \right] - pq\left[ {\begin{array}{*{20}{c}}
{\vec v}&{\vec w}&{\vec u}
\end{array}} \right] - 2{q^2}\left[ {\begin{array}{*{20}{c}}
{\vec w}&{\vec v}&{\vec u}
\end{array}} \right] = 0\,\,\,\,\,\,...(1)$
From property $(1)$, the second scalar triple product term can be replaced as follows: $\left[ {\begin{array}{*{20}{c}}
{\vec v}&{\vec w}&{\vec u}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\vec u}&{\vec v}&{\vec w}
\end{array}} \right]\,\,\,\,\,....(2)$
From property $(2)$, the third scalar triple product term can be replaced as follows:
$\left[ {\begin{array}{*{20}{c}}
{\vec w}&{\vec v}&{\vec u}
\end{array}} \right] = - \left[ {\begin{array}{*{20}{c}}
{\vec u}&{\vec v}&{\vec w}
\end{array}} \right]\,\,\,\,\,\,....(3)$
Substituting the respective values from equation $(2)$ and $(3)$ in equation $(1)$, we get,
$3{p^2}\left[ {\begin{array}{*{20}{c}}
{\vec u}&{\vec v}&{\vec w}
\end{array}} \right] - pq\left[ {\begin{array}{*{20}{c}}
{\vec u}&{\vec v}&{\vec w}
\end{array}} \right] - 2{q^2}\left( { - \left[ {\begin{array}{*{20}{c}}
{\vec u}&{\vec v}&{\vec w}
\end{array}} \right]} \right) = 0$
Solving further, then:
$3{p^2}\left[ {\begin{array}{*{20}{c}}
{\vec u}&{\vec v}&{\vec w}
\end{array}} \right] - pq\left[ {\begin{array}{*{20}{c}}
{\vec u}&{\vec v}&{\vec w}
\end{array}} \right] + 2{q^2}\left[ {\begin{array}{*{20}{c}}
{\vec u}&{\vec v}&{\vec w}
\end{array}} \right] = 0$
Taking $\left[ {\begin{array}{*{20}{c}}
{\vec u}&{\vec v}&{\vec w}
\end{array}} \right]$ common,
$\left( {3{p^2} - pq + 2{q^2}} \right)\left[ {\begin{array}{*{20}{c}}
{\vec u}&{\vec v}&{\vec w}
\end{array}} \right] = 0\,\,\,\,\,\,\,....(4)$
Now, since it is already given that the vectors $\vec u,\vec v,$and $\vec w$ are non-coplanar vectors, therefore$\left[ {\begin{array}{*{20}{c}}
{\vec u}&{\vec v}&{\vec w}
\end{array}} \right] \ne 0$.
Then, from equation $(4)$ it implies that,
$\left( {3{p^2} - pq + 2{q^2}} \right) = 0\,\,\,\,\,\,...(5)$
We can find the relation between $p$and $q$by some algebraic manipulations to solve equation (5)
Using Completing the square method to solve for, we first divide the whole equation by $3$, we get,
${p^2} - p.\dfrac{q}{3} + \dfrac{2}{3}{q^2} = 0 \\$
${p^2} - 2.p.\dfrac{q}{6} + \dfrac{2}{3}{q^2} = 0 \\$
Now, adding and subtracting ${\left( {\dfrac{q}{6}} \right)^2}$, we have,
${p^2} - 2.p.\dfrac{q}{6} + {\left( {\dfrac{q}{6}} \right)^2} - {\left( {\dfrac{q}{6}} \right)^2} + \dfrac{2}{3}{q^2} = 0 \\$
${\left( {p - \dfrac{q}{6}} \right)^2} - \dfrac{{{q^2}}}{{36}} + \dfrac{2}{3}{q^2} = 0 \\$
Solving further we get,
${\left( {p - \dfrac{q}{6}} \right)^2} + \dfrac{{23}}{{36}}{q^2} = 0\,\,\,\,\,\,...(6)$
We observe that in the LHS of equation $(6)$, both terms are square terms which means they cannot be negative. Also, if none of the terms in LHS will give a negative term cancel another term. Since $p$ and $q$ are both real numbers, it would imply that equation $(6)$ can only hold when both $p$ and $q$ are equal to zero, i.e. $p = 0$and $q = 0$.
Therefore, there is exactly one value for $p$and $q$which will hold for equation $\left[ {\begin{array}{*{20}{c}}
{3\vec u}&{p\vec v}&{p\vec w}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{p\vec v}&{\vec w}&{q\vec u}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{2\vec w}&{q\vec v}&{q\vec u}
\end{array}} \right] = 0$.
Hence, the correct option is (D).
Note:The given question can also be solved by manipulation the scalar triple product in the form \[\left[ {\begin{array}{*{20}{c}}
{\vec a}&{\vec b}&{\vec c}
\end{array}} \right] = \vec a.\left( {\vec b \times \vec c} \right)\], but it would be a lengthy solution, making use of the properties of scalar triple products is much simpler to understand. Also, the given quadratic equation can be solved using quadratic formula but it will lengthen the solution.
{3\vec u}&{p\vec v}&{p\vec w}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{p\vec v}&{\vec w}&{q\vec u}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{2\vec w}&{q\vec v}&{q\vec u}
\end{array}} \right] = 0$ is an equation consisting of scalar product. To solve this question we will use basic definition of scalar product i.e. \[\left[ {\begin{array}{*{20}{c}}
{\vec a}&{\vec b}&{\vec c}
\end{array}} \right] = \vec a.\left( {\vec b \times \vec c} \right)\] for any three vectors and properties of the scalar triple product.
Formula Used:
Three vectors are said to be non-coplanar if their support lines are not parallel to the same plane or they cannot be expressed as$\overrightarrow R = x\overrightarrow A + y\overrightarrow B + z\overrightarrow C $. Expanding the cross product of the expression, $(A + B + C) \cdot \left[ {A \times A + A \times C + B \times A + B \times C} \right]$by using identity $A \times A = 0$.
Complete step by step Solution:
In the question, the equality $\left[ {\begin{array}{*{20}{c}}
{3\vec u}&{p\vec v}&{p\vec w}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{p\vec v}&{\vec w}&{q\vec u}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{2\vec w}&{q\vec v}&{q\vec u}
\end{array}} \right] = 0$is given,
Before solving the given equation, we need to simplify the given equation using the properties of the scalar triple product. Few properties will be used here are listed below:
1. $\left[ {\begin{array}{*{20}{c}}
{\vec a}&{\vec b}&{\vec c}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\vec b}&{\vec c}&{\vec a}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\vec c}&{\vec a}&{\vec b}
\end{array}} \right]$
2. $\left[ {\begin{array}{*{20}{c}}
{\vec a}&{\vec b}&{\vec c}
\end{array}} \right] = - \left[ {\begin{array}{*{20}{c}}
{\vec b}&{\vec a}&{\vec c}
\end{array}} \right] = - \left[ {\begin{array}{*{20}{c}}
{\vec c}&{\vec b}&{\vec a}
\end{array}} \right]$
3. Scalar multiplication:$\left[ {\begin{array}{*{20}{c}}
{{k_1}\vec a}&{\vec b}&{\vec c}
\end{array}} \right] = {k_1}\left[ {\begin{array}{*{20}{c}}
{\vec a}&{\vec b}&{\vec c}
\end{array}} \right]$ where ${k_1}$is a scalar.
Consider the given equation, then we have:
$\left[ {\begin{array}{*{20}{c}}
{3\vec u}&{p\vec v}&{p\vec w}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{p\vec v}&{\vec w}&{q\vec u}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{2\vec w}&{q\vec v}&{q\vec u}
\end{array}} \right] = 0$
Using property $(3)$, we can simplify the given equation in the form below;
$3{p^2}\left[ {\begin{array}{*{20}{c}}
{\vec u}&{\vec v}&{\vec w}
\end{array}} \right] - pq\left[ {\begin{array}{*{20}{c}}
{\vec v}&{\vec w}&{\vec u}
\end{array}} \right] - 2{q^2}\left[ {\begin{array}{*{20}{c}}
{\vec w}&{\vec v}&{\vec u}
\end{array}} \right] = 0\,\,\,\,\,\,...(1)$
From property $(1)$, the second scalar triple product term can be replaced as follows: $\left[ {\begin{array}{*{20}{c}}
{\vec v}&{\vec w}&{\vec u}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\vec u}&{\vec v}&{\vec w}
\end{array}} \right]\,\,\,\,\,....(2)$
From property $(2)$, the third scalar triple product term can be replaced as follows:
$\left[ {\begin{array}{*{20}{c}}
{\vec w}&{\vec v}&{\vec u}
\end{array}} \right] = - \left[ {\begin{array}{*{20}{c}}
{\vec u}&{\vec v}&{\vec w}
\end{array}} \right]\,\,\,\,\,\,....(3)$
Substituting the respective values from equation $(2)$ and $(3)$ in equation $(1)$, we get,
$3{p^2}\left[ {\begin{array}{*{20}{c}}
{\vec u}&{\vec v}&{\vec w}
\end{array}} \right] - pq\left[ {\begin{array}{*{20}{c}}
{\vec u}&{\vec v}&{\vec w}
\end{array}} \right] - 2{q^2}\left( { - \left[ {\begin{array}{*{20}{c}}
{\vec u}&{\vec v}&{\vec w}
\end{array}} \right]} \right) = 0$
Solving further, then:
$3{p^2}\left[ {\begin{array}{*{20}{c}}
{\vec u}&{\vec v}&{\vec w}
\end{array}} \right] - pq\left[ {\begin{array}{*{20}{c}}
{\vec u}&{\vec v}&{\vec w}
\end{array}} \right] + 2{q^2}\left[ {\begin{array}{*{20}{c}}
{\vec u}&{\vec v}&{\vec w}
\end{array}} \right] = 0$
Taking $\left[ {\begin{array}{*{20}{c}}
{\vec u}&{\vec v}&{\vec w}
\end{array}} \right]$ common,
$\left( {3{p^2} - pq + 2{q^2}} \right)\left[ {\begin{array}{*{20}{c}}
{\vec u}&{\vec v}&{\vec w}
\end{array}} \right] = 0\,\,\,\,\,\,\,....(4)$
Now, since it is already given that the vectors $\vec u,\vec v,$and $\vec w$ are non-coplanar vectors, therefore$\left[ {\begin{array}{*{20}{c}}
{\vec u}&{\vec v}&{\vec w}
\end{array}} \right] \ne 0$.
Then, from equation $(4)$ it implies that,
$\left( {3{p^2} - pq + 2{q^2}} \right) = 0\,\,\,\,\,\,...(5)$
We can find the relation between $p$and $q$by some algebraic manipulations to solve equation (5)
Using Completing the square method to solve for, we first divide the whole equation by $3$, we get,
${p^2} - p.\dfrac{q}{3} + \dfrac{2}{3}{q^2} = 0 \\$
${p^2} - 2.p.\dfrac{q}{6} + \dfrac{2}{3}{q^2} = 0 \\$
Now, adding and subtracting ${\left( {\dfrac{q}{6}} \right)^2}$, we have,
${p^2} - 2.p.\dfrac{q}{6} + {\left( {\dfrac{q}{6}} \right)^2} - {\left( {\dfrac{q}{6}} \right)^2} + \dfrac{2}{3}{q^2} = 0 \\$
${\left( {p - \dfrac{q}{6}} \right)^2} - \dfrac{{{q^2}}}{{36}} + \dfrac{2}{3}{q^2} = 0 \\$
Solving further we get,
${\left( {p - \dfrac{q}{6}} \right)^2} + \dfrac{{23}}{{36}}{q^2} = 0\,\,\,\,\,\,...(6)$
We observe that in the LHS of equation $(6)$, both terms are square terms which means they cannot be negative. Also, if none of the terms in LHS will give a negative term cancel another term. Since $p$ and $q$ are both real numbers, it would imply that equation $(6)$ can only hold when both $p$ and $q$ are equal to zero, i.e. $p = 0$and $q = 0$.
Therefore, there is exactly one value for $p$and $q$which will hold for equation $\left[ {\begin{array}{*{20}{c}}
{3\vec u}&{p\vec v}&{p\vec w}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{p\vec v}&{\vec w}&{q\vec u}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{2\vec w}&{q\vec v}&{q\vec u}
\end{array}} \right] = 0$.
Hence, the correct option is (D).
Note:The given question can also be solved by manipulation the scalar triple product in the form \[\left[ {\begin{array}{*{20}{c}}
{\vec a}&{\vec b}&{\vec c}
\end{array}} \right] = \vec a.\left( {\vec b \times \vec c} \right)\], but it would be a lengthy solution, making use of the properties of scalar triple products is much simpler to understand. Also, the given quadratic equation can be solved using quadratic formula but it will lengthen the solution.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
