
If $\vec u,\vec v,$and $\vec w$ are non-coplanar vectors and, $p$and $q$are real numbers, then the equality $\left[ {\begin{array}{*{20}{c}}
{3\vec u}&{p\vec v}&{p\vec w}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{p\vec v}&{\vec w}&{q\vec u}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{2\vec w}&{q\vec v}&{q\vec u}
\end{array}} \right] = 0$ holds for:
a) Exactly two values of $(p,q)$.
b) More than two but not all values of $(p,q)$.
c) All values of $(p,q)$.
d) Exactly one value of $(p,q)$.
Answer
232.8k+ views
Hint: The given equality $\left[ {\begin{array}{*{20}{c}}
{3\vec u}&{p\vec v}&{p\vec w}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{p\vec v}&{\vec w}&{q\vec u}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{2\vec w}&{q\vec v}&{q\vec u}
\end{array}} \right] = 0$ is an equation consisting of scalar product. To solve this question we will use basic definition of scalar product i.e. \[\left[ {\begin{array}{*{20}{c}}
{\vec a}&{\vec b}&{\vec c}
\end{array}} \right] = \vec a.\left( {\vec b \times \vec c} \right)\] for any three vectors and properties of the scalar triple product.
Formula Used:
Three vectors are said to be non-coplanar if their support lines are not parallel to the same plane or they cannot be expressed as$\overrightarrow R = x\overrightarrow A + y\overrightarrow B + z\overrightarrow C $. Expanding the cross product of the expression, $(A + B + C) \cdot \left[ {A \times A + A \times C + B \times A + B \times C} \right]$by using identity $A \times A = 0$.
Complete step by step Solution:
In the question, the equality $\left[ {\begin{array}{*{20}{c}}
{3\vec u}&{p\vec v}&{p\vec w}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{p\vec v}&{\vec w}&{q\vec u}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{2\vec w}&{q\vec v}&{q\vec u}
\end{array}} \right] = 0$is given,
Before solving the given equation, we need to simplify the given equation using the properties of the scalar triple product. Few properties will be used here are listed below:
1. $\left[ {\begin{array}{*{20}{c}}
{\vec a}&{\vec b}&{\vec c}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\vec b}&{\vec c}&{\vec a}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\vec c}&{\vec a}&{\vec b}
\end{array}} \right]$
2. $\left[ {\begin{array}{*{20}{c}}
{\vec a}&{\vec b}&{\vec c}
\end{array}} \right] = - \left[ {\begin{array}{*{20}{c}}
{\vec b}&{\vec a}&{\vec c}
\end{array}} \right] = - \left[ {\begin{array}{*{20}{c}}
{\vec c}&{\vec b}&{\vec a}
\end{array}} \right]$
3. Scalar multiplication:$\left[ {\begin{array}{*{20}{c}}
{{k_1}\vec a}&{\vec b}&{\vec c}
\end{array}} \right] = {k_1}\left[ {\begin{array}{*{20}{c}}
{\vec a}&{\vec b}&{\vec c}
\end{array}} \right]$ where ${k_1}$is a scalar.
Consider the given equation, then we have:
$\left[ {\begin{array}{*{20}{c}}
{3\vec u}&{p\vec v}&{p\vec w}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{p\vec v}&{\vec w}&{q\vec u}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{2\vec w}&{q\vec v}&{q\vec u}
\end{array}} \right] = 0$
Using property $(3)$, we can simplify the given equation in the form below;
$3{p^2}\left[ {\begin{array}{*{20}{c}}
{\vec u}&{\vec v}&{\vec w}
\end{array}} \right] - pq\left[ {\begin{array}{*{20}{c}}
{\vec v}&{\vec w}&{\vec u}
\end{array}} \right] - 2{q^2}\left[ {\begin{array}{*{20}{c}}
{\vec w}&{\vec v}&{\vec u}
\end{array}} \right] = 0\,\,\,\,\,\,...(1)$
From property $(1)$, the second scalar triple product term can be replaced as follows: $\left[ {\begin{array}{*{20}{c}}
{\vec v}&{\vec w}&{\vec u}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\vec u}&{\vec v}&{\vec w}
\end{array}} \right]\,\,\,\,\,....(2)$
From property $(2)$, the third scalar triple product term can be replaced as follows:
$\left[ {\begin{array}{*{20}{c}}
{\vec w}&{\vec v}&{\vec u}
\end{array}} \right] = - \left[ {\begin{array}{*{20}{c}}
{\vec u}&{\vec v}&{\vec w}
\end{array}} \right]\,\,\,\,\,\,....(3)$
Substituting the respective values from equation $(2)$ and $(3)$ in equation $(1)$, we get,
$3{p^2}\left[ {\begin{array}{*{20}{c}}
{\vec u}&{\vec v}&{\vec w}
\end{array}} \right] - pq\left[ {\begin{array}{*{20}{c}}
{\vec u}&{\vec v}&{\vec w}
\end{array}} \right] - 2{q^2}\left( { - \left[ {\begin{array}{*{20}{c}}
{\vec u}&{\vec v}&{\vec w}
\end{array}} \right]} \right) = 0$
Solving further, then:
$3{p^2}\left[ {\begin{array}{*{20}{c}}
{\vec u}&{\vec v}&{\vec w}
\end{array}} \right] - pq\left[ {\begin{array}{*{20}{c}}
{\vec u}&{\vec v}&{\vec w}
\end{array}} \right] + 2{q^2}\left[ {\begin{array}{*{20}{c}}
{\vec u}&{\vec v}&{\vec w}
\end{array}} \right] = 0$
Taking $\left[ {\begin{array}{*{20}{c}}
{\vec u}&{\vec v}&{\vec w}
\end{array}} \right]$ common,
$\left( {3{p^2} - pq + 2{q^2}} \right)\left[ {\begin{array}{*{20}{c}}
{\vec u}&{\vec v}&{\vec w}
\end{array}} \right] = 0\,\,\,\,\,\,\,....(4)$
Now, since it is already given that the vectors $\vec u,\vec v,$and $\vec w$ are non-coplanar vectors, therefore$\left[ {\begin{array}{*{20}{c}}
{\vec u}&{\vec v}&{\vec w}
\end{array}} \right] \ne 0$.
Then, from equation $(4)$ it implies that,
$\left( {3{p^2} - pq + 2{q^2}} \right) = 0\,\,\,\,\,\,...(5)$
We can find the relation between $p$and $q$by some algebraic manipulations to solve equation (5)
Using Completing the square method to solve for, we first divide the whole equation by $3$, we get,
${p^2} - p.\dfrac{q}{3} + \dfrac{2}{3}{q^2} = 0 \\$
${p^2} - 2.p.\dfrac{q}{6} + \dfrac{2}{3}{q^2} = 0 \\$
Now, adding and subtracting ${\left( {\dfrac{q}{6}} \right)^2}$, we have,
${p^2} - 2.p.\dfrac{q}{6} + {\left( {\dfrac{q}{6}} \right)^2} - {\left( {\dfrac{q}{6}} \right)^2} + \dfrac{2}{3}{q^2} = 0 \\$
${\left( {p - \dfrac{q}{6}} \right)^2} - \dfrac{{{q^2}}}{{36}} + \dfrac{2}{3}{q^2} = 0 \\$
Solving further we get,
${\left( {p - \dfrac{q}{6}} \right)^2} + \dfrac{{23}}{{36}}{q^2} = 0\,\,\,\,\,\,...(6)$
We observe that in the LHS of equation $(6)$, both terms are square terms which means they cannot be negative. Also, if none of the terms in LHS will give a negative term cancel another term. Since $p$ and $q$ are both real numbers, it would imply that equation $(6)$ can only hold when both $p$ and $q$ are equal to zero, i.e. $p = 0$and $q = 0$.
Therefore, there is exactly one value for $p$and $q$which will hold for equation $\left[ {\begin{array}{*{20}{c}}
{3\vec u}&{p\vec v}&{p\vec w}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{p\vec v}&{\vec w}&{q\vec u}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{2\vec w}&{q\vec v}&{q\vec u}
\end{array}} \right] = 0$.
Hence, the correct option is (D).
Note:The given question can also be solved by manipulation the scalar triple product in the form \[\left[ {\begin{array}{*{20}{c}}
{\vec a}&{\vec b}&{\vec c}
\end{array}} \right] = \vec a.\left( {\vec b \times \vec c} \right)\], but it would be a lengthy solution, making use of the properties of scalar triple products is much simpler to understand. Also, the given quadratic equation can be solved using quadratic formula but it will lengthen the solution.
{3\vec u}&{p\vec v}&{p\vec w}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{p\vec v}&{\vec w}&{q\vec u}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{2\vec w}&{q\vec v}&{q\vec u}
\end{array}} \right] = 0$ is an equation consisting of scalar product. To solve this question we will use basic definition of scalar product i.e. \[\left[ {\begin{array}{*{20}{c}}
{\vec a}&{\vec b}&{\vec c}
\end{array}} \right] = \vec a.\left( {\vec b \times \vec c} \right)\] for any three vectors and properties of the scalar triple product.
Formula Used:
Three vectors are said to be non-coplanar if their support lines are not parallel to the same plane or they cannot be expressed as$\overrightarrow R = x\overrightarrow A + y\overrightarrow B + z\overrightarrow C $. Expanding the cross product of the expression, $(A + B + C) \cdot \left[ {A \times A + A \times C + B \times A + B \times C} \right]$by using identity $A \times A = 0$.
Complete step by step Solution:
In the question, the equality $\left[ {\begin{array}{*{20}{c}}
{3\vec u}&{p\vec v}&{p\vec w}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{p\vec v}&{\vec w}&{q\vec u}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{2\vec w}&{q\vec v}&{q\vec u}
\end{array}} \right] = 0$is given,
Before solving the given equation, we need to simplify the given equation using the properties of the scalar triple product. Few properties will be used here are listed below:
1. $\left[ {\begin{array}{*{20}{c}}
{\vec a}&{\vec b}&{\vec c}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\vec b}&{\vec c}&{\vec a}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\vec c}&{\vec a}&{\vec b}
\end{array}} \right]$
2. $\left[ {\begin{array}{*{20}{c}}
{\vec a}&{\vec b}&{\vec c}
\end{array}} \right] = - \left[ {\begin{array}{*{20}{c}}
{\vec b}&{\vec a}&{\vec c}
\end{array}} \right] = - \left[ {\begin{array}{*{20}{c}}
{\vec c}&{\vec b}&{\vec a}
\end{array}} \right]$
3. Scalar multiplication:$\left[ {\begin{array}{*{20}{c}}
{{k_1}\vec a}&{\vec b}&{\vec c}
\end{array}} \right] = {k_1}\left[ {\begin{array}{*{20}{c}}
{\vec a}&{\vec b}&{\vec c}
\end{array}} \right]$ where ${k_1}$is a scalar.
Consider the given equation, then we have:
$\left[ {\begin{array}{*{20}{c}}
{3\vec u}&{p\vec v}&{p\vec w}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{p\vec v}&{\vec w}&{q\vec u}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{2\vec w}&{q\vec v}&{q\vec u}
\end{array}} \right] = 0$
Using property $(3)$, we can simplify the given equation in the form below;
$3{p^2}\left[ {\begin{array}{*{20}{c}}
{\vec u}&{\vec v}&{\vec w}
\end{array}} \right] - pq\left[ {\begin{array}{*{20}{c}}
{\vec v}&{\vec w}&{\vec u}
\end{array}} \right] - 2{q^2}\left[ {\begin{array}{*{20}{c}}
{\vec w}&{\vec v}&{\vec u}
\end{array}} \right] = 0\,\,\,\,\,\,...(1)$
From property $(1)$, the second scalar triple product term can be replaced as follows: $\left[ {\begin{array}{*{20}{c}}
{\vec v}&{\vec w}&{\vec u}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\vec u}&{\vec v}&{\vec w}
\end{array}} \right]\,\,\,\,\,....(2)$
From property $(2)$, the third scalar triple product term can be replaced as follows:
$\left[ {\begin{array}{*{20}{c}}
{\vec w}&{\vec v}&{\vec u}
\end{array}} \right] = - \left[ {\begin{array}{*{20}{c}}
{\vec u}&{\vec v}&{\vec w}
\end{array}} \right]\,\,\,\,\,\,....(3)$
Substituting the respective values from equation $(2)$ and $(3)$ in equation $(1)$, we get,
$3{p^2}\left[ {\begin{array}{*{20}{c}}
{\vec u}&{\vec v}&{\vec w}
\end{array}} \right] - pq\left[ {\begin{array}{*{20}{c}}
{\vec u}&{\vec v}&{\vec w}
\end{array}} \right] - 2{q^2}\left( { - \left[ {\begin{array}{*{20}{c}}
{\vec u}&{\vec v}&{\vec w}
\end{array}} \right]} \right) = 0$
Solving further, then:
$3{p^2}\left[ {\begin{array}{*{20}{c}}
{\vec u}&{\vec v}&{\vec w}
\end{array}} \right] - pq\left[ {\begin{array}{*{20}{c}}
{\vec u}&{\vec v}&{\vec w}
\end{array}} \right] + 2{q^2}\left[ {\begin{array}{*{20}{c}}
{\vec u}&{\vec v}&{\vec w}
\end{array}} \right] = 0$
Taking $\left[ {\begin{array}{*{20}{c}}
{\vec u}&{\vec v}&{\vec w}
\end{array}} \right]$ common,
$\left( {3{p^2} - pq + 2{q^2}} \right)\left[ {\begin{array}{*{20}{c}}
{\vec u}&{\vec v}&{\vec w}
\end{array}} \right] = 0\,\,\,\,\,\,\,....(4)$
Now, since it is already given that the vectors $\vec u,\vec v,$and $\vec w$ are non-coplanar vectors, therefore$\left[ {\begin{array}{*{20}{c}}
{\vec u}&{\vec v}&{\vec w}
\end{array}} \right] \ne 0$.
Then, from equation $(4)$ it implies that,
$\left( {3{p^2} - pq + 2{q^2}} \right) = 0\,\,\,\,\,\,...(5)$
We can find the relation between $p$and $q$by some algebraic manipulations to solve equation (5)
Using Completing the square method to solve for, we first divide the whole equation by $3$, we get,
${p^2} - p.\dfrac{q}{3} + \dfrac{2}{3}{q^2} = 0 \\$
${p^2} - 2.p.\dfrac{q}{6} + \dfrac{2}{3}{q^2} = 0 \\$
Now, adding and subtracting ${\left( {\dfrac{q}{6}} \right)^2}$, we have,
${p^2} - 2.p.\dfrac{q}{6} + {\left( {\dfrac{q}{6}} \right)^2} - {\left( {\dfrac{q}{6}} \right)^2} + \dfrac{2}{3}{q^2} = 0 \\$
${\left( {p - \dfrac{q}{6}} \right)^2} - \dfrac{{{q^2}}}{{36}} + \dfrac{2}{3}{q^2} = 0 \\$
Solving further we get,
${\left( {p - \dfrac{q}{6}} \right)^2} + \dfrac{{23}}{{36}}{q^2} = 0\,\,\,\,\,\,...(6)$
We observe that in the LHS of equation $(6)$, both terms are square terms which means they cannot be negative. Also, if none of the terms in LHS will give a negative term cancel another term. Since $p$ and $q$ are both real numbers, it would imply that equation $(6)$ can only hold when both $p$ and $q$ are equal to zero, i.e. $p = 0$and $q = 0$.
Therefore, there is exactly one value for $p$and $q$which will hold for equation $\left[ {\begin{array}{*{20}{c}}
{3\vec u}&{p\vec v}&{p\vec w}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{p\vec v}&{\vec w}&{q\vec u}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{2\vec w}&{q\vec v}&{q\vec u}
\end{array}} \right] = 0$.
Hence, the correct option is (D).
Note:The given question can also be solved by manipulation the scalar triple product in the form \[\left[ {\begin{array}{*{20}{c}}
{\vec a}&{\vec b}&{\vec c}
\end{array}} \right] = \vec a.\left( {\vec b \times \vec c} \right)\], but it would be a lengthy solution, making use of the properties of scalar triple products is much simpler to understand. Also, the given quadratic equation can be solved using quadratic formula but it will lengthen the solution.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

