
If \(\vec p = \frac{{\left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}},\vec q = \frac{{\left( {\vec c \times \vec a} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}},\vec r = \frac{{\left( {\vec a \times \vec b} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}}\) where a, b, c are three non-coplanar vectors, then the value of \(\left( {a + b + c} \right).\left( {p + q + r} \right)\)is given by [MNR\(1992\); UPSEAT\(2000\)].
A) \[3\]
B) \[2\]
C) \[1\]
D) \[0\]
Answer
232.8k+ views
Hint: In this question we are going to use the algebra of vectors. Use vector multiplication and addition. Solve each part of the equation individually and after that add all these to get required value. Non coplanar vectors are those vectors which are not present in the same plane or parallel planes.If two vectors in a scalar triple product are the same then the scalar triple product will be zero.
Formula Used:Algebra of vectors i.e. vector addition and vector multiplication is used in this question.
\(\left( {\vec a + \vec b + \vec c} \right).\left( {\vec p + \vec q + \vec r} \right) = \vec a.\vec p + \vec a.\vec q + \vec a.\vec r + \vec b.\vec p + \vec b.\vec q + \vec b.\vec r + \vec c.\vec p + \vec c.\vec q + \vec c.\vec r\)
Complete step by step solution:Given: Three vectors p, q and r are non coplanar and \(\vec p = \frac{{\left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}},\vec q = \frac{{\left( {\vec c \times \vec a} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}},\vec r = \frac{{\left( {\vec a \times \vec b} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}}\)
\(\left( {\vec a + \vec b + \vec c} \right).\left( {\vec p + \vec q + \vec r} \right) = \vec a.\vec p + \vec a.\vec q + \vec a.\vec r + \vec b.\vec p + \vec b.\vec q + \vec b.\vec r + \vec c.\vec p + \vec c.\vec q + \vec c.\vec r\)
\(\vec a.\vec q = a.\left( {\frac{{\vec c \times \vec a}}{{\vec a\vec b\vec c}}} \right) = \frac{{\left[ {\vec a\vec c\vec a} \right]}}{{\left[ {\vec a\vec b\vec c} \right]}} = 0\)
If two vectors in a scalar triple product are the same then the scalar triple product will be zero.
Similarly some other scalar dot product will also be zero:
\(\vec a.\vec r = \vec b.\vec p = \vec b.\vec r = \vec c.\vec p = \vec c.\vec q = 0\)
\(\left( {\vec a + \vec b + \vec c} \right).\left( {\vec p + \vec q + \vec r} \right) = \vec a.\vec p + \vec b.\vec q + \vec c.\vec r\)
\(\vec a.\vec p + \vec b.\vec q + \vec c.\vec r = \vec a.\frac{{\left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} + \vec b.\frac{{\left( {c \times \vec a} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} + \vec c.\frac{{\left( {\vec a \times \vec b} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}}\)
\(\vec a.\frac{{\left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} + \vec b.\frac{{\left( {c \times \vec a} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} + \vec c.\frac{{\left( {\vec a \times \vec b} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} = \frac{{\left[ {\vec a\vec b\vec c} \right]}}{{\left[ {\vec a\vec b\vec c} \right]}} + \frac{{\left[ {\vec a\vec b\vec c} \right]}}{{\left[ {\vec a\vec b\vec c} \right]}} + \frac{{\left[ {\vec a\vec b\vec c} \right]}}{{\left[ {\vec a\vec b\vec c} \right]}} = 3\)
Option ‘A’ is correct
Note:Here in this question we have to find the value of the given vector equation. We will use the algebra of vectors i.e. multiplication and addition of vectors in order to find required value.
Vector addition follows commutative and associative law.
Triangle law and parallelogram law are two methods of vector addition.
Vector products are distributive in nature.
Don’t try to solve the whole equation together because it will take more time and there will be a chance of mistakes.
Formula Used:Algebra of vectors i.e. vector addition and vector multiplication is used in this question.
\(\left( {\vec a + \vec b + \vec c} \right).\left( {\vec p + \vec q + \vec r} \right) = \vec a.\vec p + \vec a.\vec q + \vec a.\vec r + \vec b.\vec p + \vec b.\vec q + \vec b.\vec r + \vec c.\vec p + \vec c.\vec q + \vec c.\vec r\)
Complete step by step solution:Given: Three vectors p, q and r are non coplanar and \(\vec p = \frac{{\left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}},\vec q = \frac{{\left( {\vec c \times \vec a} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}},\vec r = \frac{{\left( {\vec a \times \vec b} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}}\)
\(\left( {\vec a + \vec b + \vec c} \right).\left( {\vec p + \vec q + \vec r} \right) = \vec a.\vec p + \vec a.\vec q + \vec a.\vec r + \vec b.\vec p + \vec b.\vec q + \vec b.\vec r + \vec c.\vec p + \vec c.\vec q + \vec c.\vec r\)
\(\vec a.\vec q = a.\left( {\frac{{\vec c \times \vec a}}{{\vec a\vec b\vec c}}} \right) = \frac{{\left[ {\vec a\vec c\vec a} \right]}}{{\left[ {\vec a\vec b\vec c} \right]}} = 0\)
If two vectors in a scalar triple product are the same then the scalar triple product will be zero.
Similarly some other scalar dot product will also be zero:
\(\vec a.\vec r = \vec b.\vec p = \vec b.\vec r = \vec c.\vec p = \vec c.\vec q = 0\)
\(\left( {\vec a + \vec b + \vec c} \right).\left( {\vec p + \vec q + \vec r} \right) = \vec a.\vec p + \vec b.\vec q + \vec c.\vec r\)
\(\vec a.\vec p + \vec b.\vec q + \vec c.\vec r = \vec a.\frac{{\left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} + \vec b.\frac{{\left( {c \times \vec a} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} + \vec c.\frac{{\left( {\vec a \times \vec b} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}}\)
\(\vec a.\frac{{\left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} + \vec b.\frac{{\left( {c \times \vec a} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} + \vec c.\frac{{\left( {\vec a \times \vec b} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} = \frac{{\left[ {\vec a\vec b\vec c} \right]}}{{\left[ {\vec a\vec b\vec c} \right]}} + \frac{{\left[ {\vec a\vec b\vec c} \right]}}{{\left[ {\vec a\vec b\vec c} \right]}} + \frac{{\left[ {\vec a\vec b\vec c} \right]}}{{\left[ {\vec a\vec b\vec c} \right]}} = 3\)
Option ‘A’ is correct
Note:Here in this question we have to find the value of the given vector equation. We will use the algebra of vectors i.e. multiplication and addition of vectors in order to find required value.
Vector addition follows commutative and associative law.
Triangle law and parallelogram law are two methods of vector addition.
Vector products are distributive in nature.
Don’t try to solve the whole equation together because it will take more time and there will be a chance of mistakes.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Inductive Effect and Its Role in Acidic Strength

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

