
If three numbers be in G.P., then their logarithms will be in
A. A.P.
B. G.P.
C. H.P.
D. None of these
Answer
163.8k+ views
Hint: Given that a, b, and c are in G.P., the square of the second term is the product of the first and third terms, that is \[{b^2} = ac\]. Apply logarithm to it and solve the logarithm to determine which progression contains log a, log b, and log c.
Complete step by step solution: The variables a, b, and c are shown to be in geometric progression.
We must determine which logs “a”, “b”, and “c” is in which progression.
When the numbers or variables are in Geometric Progression, we know that the square of the second term equals the product of the first and third terms.
The first term is ‘a’, the second term is ‘b’, and the third term is ‘c’
The above statement means that,
\[{b^2} = ac\]
Now we have to apply logarithm to the above equation \[{b^2} = ac\]:
\[\log \left( {{b^2}} \right) = \log \left( {ac} \right)\]
Where:
\[\log \left( {{a^n}} \right) = n\log a\]
\[\log \left( {ab} \right) = \log a + \log b\]
We know that,
\[\log \left( {{b^2}} \right) = 2\log b\]
Now, \[\log \left( {{b^2}} \right)\]can be written as,
\[\log (ac) = \log a + \log c\]
From the above equation, rewrite \[\log (ac)\] as \[\log \left( {{b^2}} \right)\]
Take \[\log \] as common from the above equation, we have
\[\log \left( {{b^2}} \right) = \log (ac)\]
That implies,
\[ \to 2\log b = \log a + \log c\]
When p, q, and r form an arithmetic progression,
\[2q = p + r\]
Here, from the above calculations, we get
\[p = \log a,q = \log b,r = \log c\]--- (1)
We already know that, the arithmetic progression is,
\[2q = p + r\]
Now, substitute the values in the equation (1), we get
\[2\log b = \log a + \log c\]
Therefore, \[\log a\], \[\log b\] and \[\log c\] are in Arithmetic Progression.
Hence, the option ‘A’ is correct.
Note: A geometric progression is a number sequence in which each term following the first is obtained by multiplying the previous term by a fixed, non-zero number known as the common ratio. An arithmetic progression is a number sequence in which the difference between any two successive members is a constant, referred to as the common difference.
Complete step by step solution: The variables a, b, and c are shown to be in geometric progression.
We must determine which logs “a”, “b”, and “c” is in which progression.
When the numbers or variables are in Geometric Progression, we know that the square of the second term equals the product of the first and third terms.
The first term is ‘a’, the second term is ‘b’, and the third term is ‘c’
The above statement means that,
\[{b^2} = ac\]
Now we have to apply logarithm to the above equation \[{b^2} = ac\]:
\[\log \left( {{b^2}} \right) = \log \left( {ac} \right)\]
Where:
\[\log \left( {{a^n}} \right) = n\log a\]
\[\log \left( {ab} \right) = \log a + \log b\]
We know that,
\[\log \left( {{b^2}} \right) = 2\log b\]
Now, \[\log \left( {{b^2}} \right)\]can be written as,
\[\log (ac) = \log a + \log c\]
From the above equation, rewrite \[\log (ac)\] as \[\log \left( {{b^2}} \right)\]
Take \[\log \] as common from the above equation, we have
\[\log \left( {{b^2}} \right) = \log (ac)\]
That implies,
\[ \to 2\log b = \log a + \log c\]
When p, q, and r form an arithmetic progression,
\[2q = p + r\]
Here, from the above calculations, we get
\[p = \log a,q = \log b,r = \log c\]--- (1)
We already know that, the arithmetic progression is,
\[2q = p + r\]
Now, substitute the values in the equation (1), we get
\[2\log b = \log a + \log c\]
Therefore, \[\log a\], \[\log b\] and \[\log c\] are in Arithmetic Progression.
Hence, the option ‘A’ is correct.
Note: A geometric progression is a number sequence in which each term following the first is obtained by multiplying the previous term by a fixed, non-zero number known as the common ratio. An arithmetic progression is a number sequence in which the difference between any two successive members is a constant, referred to as the common difference.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
