
If the vectors,\[2\hat i - \hat j + \hat k\],\[\hat i + 2\hat j - 3\hat k\]and \[3\hat i + \lambda \hat j + 5\hat k\]are coplanar, then \[\lambda = ?\] [Roorkee\[1986\]; RPET \[1999\], \[02\]; Kurukshetra CEE \[2002\]].
A) \[1\]
B) \[2\]
C) \[3\]
D) \[ - 4\]
Answer
220.5k+ views
Hint: In this question we have to use the concept of coplanarity. Three vectors are said to be coplanar when they all are present in the same plane or we can say that all those vectors which can be parallel to the single plane are coplanar. In order to find whether vectors are coplanar or not we have to find a scalar triple product of three vectors. If the value of the scalar triple product is zero then we can say that three given vectors are coplanar.
Formula used: Scalar triple product of vectors \[ = \vec a{\rm{.}}\left( {\vec b \times \vec c} \right)\]
Where \[\vec a,\vec b\] and \[\vec c\]are three given vectors.
\[\vec a{\rm{.}}\left( {\vec b \times \vec c} \right) = \left| a \right|\left| {\left( {\vec b \times \vec c} \right)} \right|\cos \left( \theta \right)\]
Where \[\theta \]is the angle between \[\vec a\]and \[\left( {\vec b \times \vec c} \right)\]
\[\vec a.\left( {\vec b \times \vec c} \right) = \left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k} \right).\left| {\begin{array}{*{20}{c}}{\hat i}&{\hat j}&{\hat k}\\{{b_1}}&{{b_2}}&{{b_3}}\\{{c_1}}&{{c_2}}&{{c_3}}\end{array}} \right|\]
\[ = \left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k} \right).\left\{ {\left( {{b_2}{c_3} - {b_3}{c_2}} \right)\hat i - \left( {{b_1}{c_3} - {b_3}{c_1}} \right)\hat j + \left( {{b_1}{c_2} - {b_2}{c_1}} \right)\hat k} \right\}\]
\[ = {a_1}\left( {{b_2}{c_3} - {b_3}{c_2}} \right) - {a_2}\left( {{b_1}{c_3} - {b_3}{c_1}} \right) + {a_3}\left( {{b_1}{c_2} - {b_2}{c_1}} \right)\]
Complete step by step solution: Given: Three vectors a, b and c are coplanar
I.e. \[\vec a{\rm{.}}\left( {\vec b \times \vec c} \right) = 0\]
\[\vec a = 2\hat i - \hat j + \hat k\]
\[\vec b = \hat i + 2\hat j - 3\hat k\]
\[\vec c = 3\hat i + \lambda \hat j + 5\hat k\]
Where,
\[{a_1} = 2,{\rm{\;}}{a_{2 = }} - 1,{\rm{\;}}{a_3} = 1\]
\[{b_1} = 1,{\rm{\;}}{b_2} = 2,{b_3} = - 3\]
\[{c_1} = 3,{\rm{\;}}{c_2} = \lambda ,\;{c_3} = 5\]
\[\vec a.\left( {\vec b \times \vec c} \right) = \left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k} \right).\left| {\begin{array}{*{20}{c}}{\hat i}&{\hat j}&{\hat k}\\{{b_1}}&{{b_2}}&{{b_3}}\\{{c_1}}&{{c_2}}&{{c_3}}\end{array}} \right|\]
\[ = \left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k} \right).\left\{ {\left( {{b_2}{c_3} - {b_3}{c_2}} \right)\hat i - \left( {{b_1}{c_3} - {b_3}{c_1}} \right)\hat j + \left( {{b_1}{c_2} - {b_2}{c_1}} \right)\hat k} \right\}\]
\[ = {a_1}\left( {{b_2}{c_3} - {b_3}{c_2}} \right) - {a_2}\left( {{b_1}{c_3} - {b_3}{c_1}} \right) + {a_3}\left( {{b_1}{c_2} - {b_2}{c_1}} \right)\]
\[\vec a{\rm{.}}\left( {\vec b \times \vec c} \right) = 0\]
\[2\left( {2 \times 5 - \left( { - 3} \right) \times \lambda } \right) - \left( { - 1} \right)\left( {1 \times 5 - \left( { - 3} \right) \times 3} \right) + 1\left( {1 \times \lambda - 2 \times 3} \right) = 0\]
\[2\left( {10 + 3\lambda } \right) + \left( {5 + 9} \right) + \left( {\lambda - 6} \right) = 0\]
\[20 + 6\lambda + 14 + \lambda - 6 = 0\]
\[7\lambda + 28 = 0\]
\[\lambda = - 7\]
Thus, Option (D) is correct.
Note: Here question asked to find the value of unknown variable . In order to find the value of \[\lambda \] we must know the concept of coplanarity. Scalar triple product formula is used to find the required value. Scalar triple product means product of three vectors i.e. dot product of one of the vectors with cross product of other two vectors.
Scalar triple products are represented as [a b c].
The resultant scalar triple product is always scalar. Whenever we get the value of a scalar triple product as zero we can say that three vectors are coplanar.
Scalar triple product may be zero, negative and positive.
Formula used: Scalar triple product of vectors \[ = \vec a{\rm{.}}\left( {\vec b \times \vec c} \right)\]
Where \[\vec a,\vec b\] and \[\vec c\]are three given vectors.
\[\vec a{\rm{.}}\left( {\vec b \times \vec c} \right) = \left| a \right|\left| {\left( {\vec b \times \vec c} \right)} \right|\cos \left( \theta \right)\]
Where \[\theta \]is the angle between \[\vec a\]and \[\left( {\vec b \times \vec c} \right)\]
\[\vec a.\left( {\vec b \times \vec c} \right) = \left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k} \right).\left| {\begin{array}{*{20}{c}}{\hat i}&{\hat j}&{\hat k}\\{{b_1}}&{{b_2}}&{{b_3}}\\{{c_1}}&{{c_2}}&{{c_3}}\end{array}} \right|\]
\[ = \left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k} \right).\left\{ {\left( {{b_2}{c_3} - {b_3}{c_2}} \right)\hat i - \left( {{b_1}{c_3} - {b_3}{c_1}} \right)\hat j + \left( {{b_1}{c_2} - {b_2}{c_1}} \right)\hat k} \right\}\]
\[ = {a_1}\left( {{b_2}{c_3} - {b_3}{c_2}} \right) - {a_2}\left( {{b_1}{c_3} - {b_3}{c_1}} \right) + {a_3}\left( {{b_1}{c_2} - {b_2}{c_1}} \right)\]
Complete step by step solution: Given: Three vectors a, b and c are coplanar
I.e. \[\vec a{\rm{.}}\left( {\vec b \times \vec c} \right) = 0\]
\[\vec a = 2\hat i - \hat j + \hat k\]
\[\vec b = \hat i + 2\hat j - 3\hat k\]
\[\vec c = 3\hat i + \lambda \hat j + 5\hat k\]
Where,
\[{a_1} = 2,{\rm{\;}}{a_{2 = }} - 1,{\rm{\;}}{a_3} = 1\]
\[{b_1} = 1,{\rm{\;}}{b_2} = 2,{b_3} = - 3\]
\[{c_1} = 3,{\rm{\;}}{c_2} = \lambda ,\;{c_3} = 5\]
\[\vec a.\left( {\vec b \times \vec c} \right) = \left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k} \right).\left| {\begin{array}{*{20}{c}}{\hat i}&{\hat j}&{\hat k}\\{{b_1}}&{{b_2}}&{{b_3}}\\{{c_1}}&{{c_2}}&{{c_3}}\end{array}} \right|\]
\[ = \left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k} \right).\left\{ {\left( {{b_2}{c_3} - {b_3}{c_2}} \right)\hat i - \left( {{b_1}{c_3} - {b_3}{c_1}} \right)\hat j + \left( {{b_1}{c_2} - {b_2}{c_1}} \right)\hat k} \right\}\]
\[ = {a_1}\left( {{b_2}{c_3} - {b_3}{c_2}} \right) - {a_2}\left( {{b_1}{c_3} - {b_3}{c_1}} \right) + {a_3}\left( {{b_1}{c_2} - {b_2}{c_1}} \right)\]
\[\vec a{\rm{.}}\left( {\vec b \times \vec c} \right) = 0\]
\[2\left( {2 \times 5 - \left( { - 3} \right) \times \lambda } \right) - \left( { - 1} \right)\left( {1 \times 5 - \left( { - 3} \right) \times 3} \right) + 1\left( {1 \times \lambda - 2 \times 3} \right) = 0\]
\[2\left( {10 + 3\lambda } \right) + \left( {5 + 9} \right) + \left( {\lambda - 6} \right) = 0\]
\[20 + 6\lambda + 14 + \lambda - 6 = 0\]
\[7\lambda + 28 = 0\]
\[\lambda = - 7\]
Thus, Option (D) is correct.
Note: Here question asked to find the value of unknown variable . In order to find the value of \[\lambda \] we must know the concept of coplanarity. Scalar triple product formula is used to find the required value. Scalar triple product means product of three vectors i.e. dot product of one of the vectors with cross product of other two vectors.
Scalar triple products are represented as [a b c].
The resultant scalar triple product is always scalar. Whenever we get the value of a scalar triple product as zero we can say that three vectors are coplanar.
Scalar triple product may be zero, negative and positive.
Recently Updated Pages
In a game two players A and B take turns in throwing class 12 maths JEE_Main

The number of ways in which 6 men and 5 women can dine class 12 maths JEE_Main

The area of an expanding rectangle is increasing at class 12 maths JEE_Main

If y xxx cdots infty then find dfracdydx A yxy 1 B class 12 maths JEE_Main

Mutually Exclusive vs Independent Events: Key Differences Explained

Area vs Volume: Key Differences Explained for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Electromagnetic Waves and Their Importance

Understanding Collisions: Types and Examples for Students

