
If the vectors \[2\widehat{i}+\widehat{j}-\widehat{k},-\widehat{i}+2\widehat{j}+\lambda \widehat{k}\] and \[-5\widehat{i}+2\widehat{j}-\widehat{k}\] are coplanar, then the value of \[\lambda \] is equal to
A. \[-13\]
B. \[\dfrac{13}{9}\]
C. \[-\dfrac{13}{9}\]
D. \[-\dfrac{9}{13}\]
Answer
217.2k+ views
Hint: In this question, we have to find the value of \[\lambda \]. In a three-dimensional space when vectors lie on the same plane, then they are called Coplanar vectors. These vectors are parallelly aligned to the same plane. When the scalar triple product is zero for the given three vectors in 3d-space, then the vectors are coplanar
Formula used: Scalar triple product of three vectors:
We have the vectors \[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\] as
\[\begin{align}
& \overrightarrow{a}={{a}_{1}}\overrightarrow{i}+{{a}_{2}}\overrightarrow{j}+{{a}_{3}}\overrightarrow{k} \\
& \overrightarrow{b}={{b}_{1}}\overrightarrow{i}+{{b}_{2}}\overrightarrow{j}+{{b}_{3}}\overrightarrow{k} \\
& \overrightarrow{c}={{c}_{1}}\overrightarrow{i}+{{c}_{2}}\overrightarrow{j}+{{c}_{3}}\overrightarrow{k} \\
\end{align}\]
Then, the triple product is calculated by,
\[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|\]
Complete step by step solution: It is given that,
\[\begin{align}
& \overrightarrow{a}=2\widehat{i}+\widehat{j}-\widehat{k} \\
& \overrightarrow{b}=-\widehat{i}+2\widehat{j}+\lambda \widehat{k} \\
& \overrightarrow{c}=-5\widehat{i}+2\widehat{j}-\widehat{k} \\
\end{align}\]
These three vectors are coplanar. Then, \[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=0\]
On substituting,
\[\begin{align}
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right| \\
& \text{ }=\left| \begin{matrix}
2 & 1 & -1 \\
-1 & 2 & \lambda \\
-5 & 2 & -1 \\
\end{matrix} \right| \\
& \text{ }=2(-2-2\lambda )-1(1+5\lambda )-1(-2+10) \\
& \text{ }=-4-4\lambda -1-5\lambda +2-10 \\
& \text{ }=-9\lambda -13 \\
\end{align}\]
Thus,
\[\begin{align}
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=-9\lambda -13=0 \\
& \Rightarrow 9\lambda =-13 \\
& \Rightarrow \lambda =\dfrac{-13}{9} \\
\end{align}\]
Thus, Option (C) is correct.
Note: To solve this problem conditions for coplanarity must be remembered i.e., if three vectors are coplanar, then their scalar triple product is zero. One should know the concept of dot product and cross product before tackling such questions.
Formula used: Scalar triple product of three vectors:
We have the vectors \[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\] as
\[\begin{align}
& \overrightarrow{a}={{a}_{1}}\overrightarrow{i}+{{a}_{2}}\overrightarrow{j}+{{a}_{3}}\overrightarrow{k} \\
& \overrightarrow{b}={{b}_{1}}\overrightarrow{i}+{{b}_{2}}\overrightarrow{j}+{{b}_{3}}\overrightarrow{k} \\
& \overrightarrow{c}={{c}_{1}}\overrightarrow{i}+{{c}_{2}}\overrightarrow{j}+{{c}_{3}}\overrightarrow{k} \\
\end{align}\]
Then, the triple product is calculated by,
\[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|\]
Complete step by step solution: It is given that,
\[\begin{align}
& \overrightarrow{a}=2\widehat{i}+\widehat{j}-\widehat{k} \\
& \overrightarrow{b}=-\widehat{i}+2\widehat{j}+\lambda \widehat{k} \\
& \overrightarrow{c}=-5\widehat{i}+2\widehat{j}-\widehat{k} \\
\end{align}\]
These three vectors are coplanar. Then, \[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=0\]
On substituting,
\[\begin{align}
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right| \\
& \text{ }=\left| \begin{matrix}
2 & 1 & -1 \\
-1 & 2 & \lambda \\
-5 & 2 & -1 \\
\end{matrix} \right| \\
& \text{ }=2(-2-2\lambda )-1(1+5\lambda )-1(-2+10) \\
& \text{ }=-4-4\lambda -1-5\lambda +2-10 \\
& \text{ }=-9\lambda -13 \\
\end{align}\]
Thus,
\[\begin{align}
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=-9\lambda -13=0 \\
& \Rightarrow 9\lambda =-13 \\
& \Rightarrow \lambda =\dfrac{-13}{9} \\
\end{align}\]
Thus, Option (C) is correct.
Note: To solve this problem conditions for coplanarity must be remembered i.e., if three vectors are coplanar, then their scalar triple product is zero. One should know the concept of dot product and cross product before tackling such questions.
Recently Updated Pages
Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Addition of Three Vectors: Methods & Examples

Addition of Vectors: Simple Guide for Students

Algebra Made Easy: Step-by-Step Guide for Students

Relations and Functions: Complete Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

