
If the vectors \[2\widehat{i}+\widehat{j}-\widehat{k},-\widehat{i}+2\widehat{j}+\lambda \widehat{k}\] and \[-5\widehat{i}+2\widehat{j}-\widehat{k}\] are coplanar, then the value of \[\lambda \] is equal to
A. \[-13\]
B. \[\dfrac{13}{9}\]
C. \[-\dfrac{13}{9}\]
D. \[-\dfrac{9}{13}\]
Answer
232.8k+ views
Hint: In this question, we have to find the value of \[\lambda \]. In a three-dimensional space when vectors lie on the same plane, then they are called Coplanar vectors. These vectors are parallelly aligned to the same plane. When the scalar triple product is zero for the given three vectors in 3d-space, then the vectors are coplanar
Formula used: Scalar triple product of three vectors:
We have the vectors \[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\] as
\[\begin{align}
& \overrightarrow{a}={{a}_{1}}\overrightarrow{i}+{{a}_{2}}\overrightarrow{j}+{{a}_{3}}\overrightarrow{k} \\
& \overrightarrow{b}={{b}_{1}}\overrightarrow{i}+{{b}_{2}}\overrightarrow{j}+{{b}_{3}}\overrightarrow{k} \\
& \overrightarrow{c}={{c}_{1}}\overrightarrow{i}+{{c}_{2}}\overrightarrow{j}+{{c}_{3}}\overrightarrow{k} \\
\end{align}\]
Then, the triple product is calculated by,
\[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|\]
Complete step by step solution: It is given that,
\[\begin{align}
& \overrightarrow{a}=2\widehat{i}+\widehat{j}-\widehat{k} \\
& \overrightarrow{b}=-\widehat{i}+2\widehat{j}+\lambda \widehat{k} \\
& \overrightarrow{c}=-5\widehat{i}+2\widehat{j}-\widehat{k} \\
\end{align}\]
These three vectors are coplanar. Then, \[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=0\]
On substituting,
\[\begin{align}
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right| \\
& \text{ }=\left| \begin{matrix}
2 & 1 & -1 \\
-1 & 2 & \lambda \\
-5 & 2 & -1 \\
\end{matrix} \right| \\
& \text{ }=2(-2-2\lambda )-1(1+5\lambda )-1(-2+10) \\
& \text{ }=-4-4\lambda -1-5\lambda +2-10 \\
& \text{ }=-9\lambda -13 \\
\end{align}\]
Thus,
\[\begin{align}
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=-9\lambda -13=0 \\
& \Rightarrow 9\lambda =-13 \\
& \Rightarrow \lambda =\dfrac{-13}{9} \\
\end{align}\]
Thus, Option (C) is correct.
Note: To solve this problem conditions for coplanarity must be remembered i.e., if three vectors are coplanar, then their scalar triple product is zero. One should know the concept of dot product and cross product before tackling such questions.
Formula used: Scalar triple product of three vectors:
We have the vectors \[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\] as
\[\begin{align}
& \overrightarrow{a}={{a}_{1}}\overrightarrow{i}+{{a}_{2}}\overrightarrow{j}+{{a}_{3}}\overrightarrow{k} \\
& \overrightarrow{b}={{b}_{1}}\overrightarrow{i}+{{b}_{2}}\overrightarrow{j}+{{b}_{3}}\overrightarrow{k} \\
& \overrightarrow{c}={{c}_{1}}\overrightarrow{i}+{{c}_{2}}\overrightarrow{j}+{{c}_{3}}\overrightarrow{k} \\
\end{align}\]
Then, the triple product is calculated by,
\[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|\]
Complete step by step solution: It is given that,
\[\begin{align}
& \overrightarrow{a}=2\widehat{i}+\widehat{j}-\widehat{k} \\
& \overrightarrow{b}=-\widehat{i}+2\widehat{j}+\lambda \widehat{k} \\
& \overrightarrow{c}=-5\widehat{i}+2\widehat{j}-\widehat{k} \\
\end{align}\]
These three vectors are coplanar. Then, \[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=0\]
On substituting,
\[\begin{align}
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right| \\
& \text{ }=\left| \begin{matrix}
2 & 1 & -1 \\
-1 & 2 & \lambda \\
-5 & 2 & -1 \\
\end{matrix} \right| \\
& \text{ }=2(-2-2\lambda )-1(1+5\lambda )-1(-2+10) \\
& \text{ }=-4-4\lambda -1-5\lambda +2-10 \\
& \text{ }=-9\lambda -13 \\
\end{align}\]
Thus,
\[\begin{align}
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=-9\lambda -13=0 \\
& \Rightarrow 9\lambda =-13 \\
& \Rightarrow \lambda =\dfrac{-13}{9} \\
\end{align}\]
Thus, Option (C) is correct.
Note: To solve this problem conditions for coplanarity must be remembered i.e., if three vectors are coplanar, then their scalar triple product is zero. One should know the concept of dot product and cross product before tackling such questions.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Electromagnetic Waves and Their Importance

Inductive Effect and Its Role in Acidic Strength

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Average and RMS Value in Electrical Circuits

Other Pages
Understanding Collisions: Types and Examples for Students

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

NCERT Solutions For Class 11 Maths Chapter 6 Permutations and Combinations (2025-26)

NCERT Solutions For Class 11 Maths Chapter 11 Introduction to Three Dimensional Geometry (2025-26)

Introduction to Three Dimensional Geometry Class 11 Maths Chapter 11 CBSE Notes - 2025-26

Chemistry Question Papers for JEE Main, NEET & Boards (PDFs)

