
If the vectors \[2\widehat{i}+\widehat{j}-\widehat{k},-\widehat{i}+2\widehat{j}+\lambda \widehat{k}\] and \[-5\widehat{i}+2\widehat{j}-\widehat{k}\] are coplanar, then the value of \[\lambda \] is equal to
A. \[-13\]
B. \[\dfrac{13}{9}\]
C. \[-\dfrac{13}{9}\]
D. \[-\dfrac{9}{13}\]
Answer
162.6k+ views
Hint: In this question, we have to find the value of \[\lambda \]. In a three-dimensional space when vectors lie on the same plane, then they are called Coplanar vectors. These vectors are parallelly aligned to the same plane. When the scalar triple product is zero for the given three vectors in 3d-space, then the vectors are coplanar
Formula used: Scalar triple product of three vectors:
We have the vectors \[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\] as
\[\begin{align}
& \overrightarrow{a}={{a}_{1}}\overrightarrow{i}+{{a}_{2}}\overrightarrow{j}+{{a}_{3}}\overrightarrow{k} \\
& \overrightarrow{b}={{b}_{1}}\overrightarrow{i}+{{b}_{2}}\overrightarrow{j}+{{b}_{3}}\overrightarrow{k} \\
& \overrightarrow{c}={{c}_{1}}\overrightarrow{i}+{{c}_{2}}\overrightarrow{j}+{{c}_{3}}\overrightarrow{k} \\
\end{align}\]
Then, the triple product is calculated by,
\[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|\]
Complete step by step solution: It is given that,
\[\begin{align}
& \overrightarrow{a}=2\widehat{i}+\widehat{j}-\widehat{k} \\
& \overrightarrow{b}=-\widehat{i}+2\widehat{j}+\lambda \widehat{k} \\
& \overrightarrow{c}=-5\widehat{i}+2\widehat{j}-\widehat{k} \\
\end{align}\]
These three vectors are coplanar. Then, \[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=0\]
On substituting,
\[\begin{align}
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right| \\
& \text{ }=\left| \begin{matrix}
2 & 1 & -1 \\
-1 & 2 & \lambda \\
-5 & 2 & -1 \\
\end{matrix} \right| \\
& \text{ }=2(-2-2\lambda )-1(1+5\lambda )-1(-2+10) \\
& \text{ }=-4-4\lambda -1-5\lambda +2-10 \\
& \text{ }=-9\lambda -13 \\
\end{align}\]
Thus,
\[\begin{align}
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=-9\lambda -13=0 \\
& \Rightarrow 9\lambda =-13 \\
& \Rightarrow \lambda =\dfrac{-13}{9} \\
\end{align}\]
Thus, Option (C) is correct.
Note: To solve this problem conditions for coplanarity must be remembered i.e., if three vectors are coplanar, then their scalar triple product is zero. One should know the concept of dot product and cross product before tackling such questions.
Formula used: Scalar triple product of three vectors:
We have the vectors \[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\] as
\[\begin{align}
& \overrightarrow{a}={{a}_{1}}\overrightarrow{i}+{{a}_{2}}\overrightarrow{j}+{{a}_{3}}\overrightarrow{k} \\
& \overrightarrow{b}={{b}_{1}}\overrightarrow{i}+{{b}_{2}}\overrightarrow{j}+{{b}_{3}}\overrightarrow{k} \\
& \overrightarrow{c}={{c}_{1}}\overrightarrow{i}+{{c}_{2}}\overrightarrow{j}+{{c}_{3}}\overrightarrow{k} \\
\end{align}\]
Then, the triple product is calculated by,
\[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|\]
Complete step by step solution: It is given that,
\[\begin{align}
& \overrightarrow{a}=2\widehat{i}+\widehat{j}-\widehat{k} \\
& \overrightarrow{b}=-\widehat{i}+2\widehat{j}+\lambda \widehat{k} \\
& \overrightarrow{c}=-5\widehat{i}+2\widehat{j}-\widehat{k} \\
\end{align}\]
These three vectors are coplanar. Then, \[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=0\]
On substituting,
\[\begin{align}
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right| \\
& \text{ }=\left| \begin{matrix}
2 & 1 & -1 \\
-1 & 2 & \lambda \\
-5 & 2 & -1 \\
\end{matrix} \right| \\
& \text{ }=2(-2-2\lambda )-1(1+5\lambda )-1(-2+10) \\
& \text{ }=-4-4\lambda -1-5\lambda +2-10 \\
& \text{ }=-9\lambda -13 \\
\end{align}\]
Thus,
\[\begin{align}
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=-9\lambda -13=0 \\
& \Rightarrow 9\lambda =-13 \\
& \Rightarrow \lambda =\dfrac{-13}{9} \\
\end{align}\]
Thus, Option (C) is correct.
Note: To solve this problem conditions for coplanarity must be remembered i.e., if three vectors are coplanar, then their scalar triple product is zero. One should know the concept of dot product and cross product before tackling such questions.
Recently Updated Pages
Fluid Pressure - Important Concepts and Tips for JEE

JEE Main 2023 (February 1st Shift 2) Physics Question Paper with Answer Key

Impulse Momentum Theorem Important Concepts and Tips for JEE

Graphical Methods of Vector Addition - Important Concepts for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

JEE Main 2023 (February 1st Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
