
If the uncertainty in the position of an electron is ${10^{ - 10}}m$, then the value of uncertainty in its momentum will be ______________ $kgm{s^{ - 1}}$. $\left( {h = 6.62 \times {{10}^{ - 34}}J - s} \right)$.
(A) $0.53 \times {10^{ - 24}}$
(B) $1.35 \times {10^{ - 24}}$
(C) $1.06 \times {10^{ - 24}}$
(D) $1.08 \times {10^{ - 24}}$
Answer
170.7k+ views
Hint: To solve this question we need to use the Heisenberg’s uncertainty principle. The value of the uncertainty in the position of the electron is given in the question. Substituting it in the Heisenberg’s relation, we can get the required value of the uncertainty in the momentum of the electron.
Formula used: The formula used to solve this question is given by
\[\Delta x\Delta p = \dfrac{h}{{4\pi }}\], here $\Delta x$ is the uncertainty in the position, $\Delta p$ is the uncertainty in the momentum, and $h$ is the Planck’s constant.
Complete step-by-step answer:
According to the Heisenberg’s uncertainty principle, it is impossible to measure the position and the momentum of a particle simultaneously with high precision.
We know from the Heisenberg’s uncertainty principle that the uncertainty in the position and the momentum of a particle are related by the equation
\[\Delta x\Delta p = \dfrac{h}{{4\pi }}\] …………………….(1)
According to the question, the uncertainty in the position of the electron is given as
$\Delta x = {10^{ - 10}}m$ …………..(2)
Also the value of the Planck’s constant is given as
$h = 6.62 \times {10^{ - 34}}J - s$ ……………...(3)
Substituting (2) and (3) in (1) we get
\[{10^{ - 10}}\Delta p = \dfrac{{6.62 \times {{10}^{ - 34}}}}{{4\pi }}\]
Multiplying by ${10^{ - 10}}$ on both the sides we get
\[\Delta p = \dfrac{{6.62 \times {{10}^{ - 24}}}}{{4\pi }}kgm{s^{ - 1}}\]
On solving we get
$\Delta p = 0.53 \times {10^{ - 24}}kgm{s^{ - 1}}$
Thus, the value of the uncertainty in the momentum of the electron is equal to \[0.53 \times {10^{ - 24}}kgm{s^{ - 1}}\].
Hence, the correct answer is option A.
Note: The Heisenberg’s uncertainty principle can be used to prove the non existence of an electron in the nucleus. So we can prove that an electron can always revolve around the nucleus. Also, it is used in determining the Bohr’s radius, and the binding energy of the electron in an orbit.
Formula used: The formula used to solve this question is given by
\[\Delta x\Delta p = \dfrac{h}{{4\pi }}\], here $\Delta x$ is the uncertainty in the position, $\Delta p$ is the uncertainty in the momentum, and $h$ is the Planck’s constant.
Complete step-by-step answer:
According to the Heisenberg’s uncertainty principle, it is impossible to measure the position and the momentum of a particle simultaneously with high precision.
We know from the Heisenberg’s uncertainty principle that the uncertainty in the position and the momentum of a particle are related by the equation
\[\Delta x\Delta p = \dfrac{h}{{4\pi }}\] …………………….(1)
According to the question, the uncertainty in the position of the electron is given as
$\Delta x = {10^{ - 10}}m$ …………..(2)
Also the value of the Planck’s constant is given as
$h = 6.62 \times {10^{ - 34}}J - s$ ……………...(3)
Substituting (2) and (3) in (1) we get
\[{10^{ - 10}}\Delta p = \dfrac{{6.62 \times {{10}^{ - 34}}}}{{4\pi }}\]
Multiplying by ${10^{ - 10}}$ on both the sides we get
\[\Delta p = \dfrac{{6.62 \times {{10}^{ - 24}}}}{{4\pi }}kgm{s^{ - 1}}\]
On solving we get
$\Delta p = 0.53 \times {10^{ - 24}}kgm{s^{ - 1}}$
Thus, the value of the uncertainty in the momentum of the electron is equal to \[0.53 \times {10^{ - 24}}kgm{s^{ - 1}}\].
Hence, the correct answer is option A.
Note: The Heisenberg’s uncertainty principle can be used to prove the non existence of an electron in the nucleus. So we can prove that an electron can always revolve around the nucleus. Also, it is used in determining the Bohr’s radius, and the binding energy of the electron in an orbit.
Recently Updated Pages
Molarity vs Molality: Definitions, Formulas & Key Differences

Preparation of Hydrogen Gas: Methods & Uses Explained

Polymers in Chemistry: Definition, Types, Examples & Uses

P Block Elements: Definition, Groups, Trends & Properties for JEE/NEET

Order of Reaction in Chemistry: Definition, Formula & Examples

Hydrocarbons: Types, Formula, Structure & Examples Explained

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Uniform Acceleration

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

What is Hybridisation in Chemistry?

Wheatstone Bridge for JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
