
If the sides of a triangle are in A.P., then the cotangent of its half the angles will be in
A. H.P.
B. G.P.
C. A.P.
D. None of these
Answer
164.1k+ views
Hint: First we will assume that the cotangent of its half the angles are in A.P. Then check whether the progression is in A.P. or not using different laws of half angles of cosines and sine.
Formula used:
If a, b, c are in A.P., then a + c =2b.
Half angle formula for an oblique triangle
\[\sin \dfrac{A}{2} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} \]
\[\sin \dfrac{B}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \]
\[\sin \dfrac{C}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} \]
\[\cos \dfrac{A}{2} = \sqrt {\dfrac{{s\left( {s - a} \right)}}{{bc}}} \]
\[\cos \dfrac{B}{2} = \sqrt {\dfrac{{s\left( {s - b} \right)}}{{ac}}} \]
\[\cos \dfrac{C}{2} = \sqrt {\dfrac{{s\left( {s - c} \right)}}{{ab}}} \]
Complete step by step solution:
Assume that, \[\cot \dfrac{A}{2}\], \[\cot \dfrac{B}{2}\], \[\cot \dfrac{C}{2}\]are in A.P.
Thus, \[\cot \dfrac{A}{2} + \cot \dfrac{C}{2} = 2\cot \dfrac{B}{2}\]
L.H.S\[ = \cot \dfrac{A}{2} + \cot \dfrac{C}{2}\]
Apply the formula \[\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}\]
\[ = \dfrac{{\cos \dfrac{A}{2}}}{{\sin \dfrac{A}{2}}} + \dfrac{{\cos \dfrac{C}{2}}}{{\sin \dfrac{C}{2}}}\]
Now we will apply the half angle formula
\[ = \dfrac{{\sqrt {\dfrac{{s\left( {s - a} \right)}}{{bc}}} }}{{\sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} }} + \dfrac{{\sqrt {\dfrac{{s\left( {s - c} \right)}}{{ab}}} }}{{\sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} }}\]
\[ = \dfrac{{\sqrt {s\left( {s - a} \right)} }}{{\sqrt {\left( {s - b} \right)\left( {s - c} \right)} }} + \dfrac{{\sqrt {s\left( {s - c} \right)} }}{{\sqrt {\left( {s - a} \right)\left( {s - b} \right)} }}\]
\[ = \dfrac{{\sqrt {s{{\left( {s - a} \right)}^2}} + \sqrt {s{{\left( {s - c} \right)}^2}} }}{{\sqrt {\left( {s - b} \right)\left( {s - c} \right)\left( {s - a} \right)} }}\]
\[ = \dfrac{{\sqrt s \left[ {\left( {s - a} \right) + \left( {s - c} \right)} \right]}}{{\sqrt {\left( {s - b} \right)\left( {s - c} \right)\left( {s - a} \right)} }}\]
\[ = \dfrac{{\sqrt s \left[ {2s - a - c} \right]}}{{\sqrt {\left( {s - b} \right)\left( {s - c} \right)\left( {s - a} \right)} }}\]
Given that, a,b,c are in AP, thus \[a + c = 2b\]
\[ = \dfrac{{\sqrt s \left( {2s - 2b} \right)}}{{\sqrt {\left( {s - b} \right)\left( {s - c} \right)\left( {s - a} \right)} }}\]
\[ = 2\dfrac{{\sqrt s \left( {s - b} \right)}}{{\sqrt {\left( {s - b} \right)\left( {s - c} \right)\left( {s - a} \right)} }}\]
\[ = 2\dfrac{{\sqrt {s{{\left( {s - b} \right)}^2}} }}{{\sqrt {\left( {s - b} \right)\left( {s - c} \right)\left( {s - a} \right)} }}\]
\[ = 2\dfrac{{\sqrt {s\left( {s - b} \right)} }}{{\sqrt {\left( {s - c} \right)\left( {s - a} \right)} }}\]
We know that, \[\sin \dfrac{B}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \] and \[\cos \dfrac{B}{2} = \sqrt {\dfrac{{s\left( {s - b} \right)}}{{ac}}} \] . So \[\cot \dfrac{B}{2} = \dfrac{{\sqrt {s\left( {s - b} \right)} }}{{\sqrt {\left( {s - c} \right)\left( {s - a} \right)} }}\]
\[ = 2\cot \dfrac{B}{2}\]
Thus, our assumption is correct.
Hence option C is the correct answer.
Note: Students often make the mistake of considering that the cotangent of its half the angles in G.P or H.P. First, we will check it for A.P. Then after that we will check other progressions.
Formula used:
If a, b, c are in A.P., then a + c =2b.
Half angle formula for an oblique triangle
\[\sin \dfrac{A}{2} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} \]
\[\sin \dfrac{B}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \]
\[\sin \dfrac{C}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} \]
\[\cos \dfrac{A}{2} = \sqrt {\dfrac{{s\left( {s - a} \right)}}{{bc}}} \]
\[\cos \dfrac{B}{2} = \sqrt {\dfrac{{s\left( {s - b} \right)}}{{ac}}} \]
\[\cos \dfrac{C}{2} = \sqrt {\dfrac{{s\left( {s - c} \right)}}{{ab}}} \]
Complete step by step solution:
Assume that, \[\cot \dfrac{A}{2}\], \[\cot \dfrac{B}{2}\], \[\cot \dfrac{C}{2}\]are in A.P.
Thus, \[\cot \dfrac{A}{2} + \cot \dfrac{C}{2} = 2\cot \dfrac{B}{2}\]
L.H.S\[ = \cot \dfrac{A}{2} + \cot \dfrac{C}{2}\]
Apply the formula \[\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}\]
\[ = \dfrac{{\cos \dfrac{A}{2}}}{{\sin \dfrac{A}{2}}} + \dfrac{{\cos \dfrac{C}{2}}}{{\sin \dfrac{C}{2}}}\]
Now we will apply the half angle formula
\[ = \dfrac{{\sqrt {\dfrac{{s\left( {s - a} \right)}}{{bc}}} }}{{\sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} }} + \dfrac{{\sqrt {\dfrac{{s\left( {s - c} \right)}}{{ab}}} }}{{\sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} }}\]
\[ = \dfrac{{\sqrt {s\left( {s - a} \right)} }}{{\sqrt {\left( {s - b} \right)\left( {s - c} \right)} }} + \dfrac{{\sqrt {s\left( {s - c} \right)} }}{{\sqrt {\left( {s - a} \right)\left( {s - b} \right)} }}\]
\[ = \dfrac{{\sqrt {s{{\left( {s - a} \right)}^2}} + \sqrt {s{{\left( {s - c} \right)}^2}} }}{{\sqrt {\left( {s - b} \right)\left( {s - c} \right)\left( {s - a} \right)} }}\]
\[ = \dfrac{{\sqrt s \left[ {\left( {s - a} \right) + \left( {s - c} \right)} \right]}}{{\sqrt {\left( {s - b} \right)\left( {s - c} \right)\left( {s - a} \right)} }}\]
\[ = \dfrac{{\sqrt s \left[ {2s - a - c} \right]}}{{\sqrt {\left( {s - b} \right)\left( {s - c} \right)\left( {s - a} \right)} }}\]
Given that, a,b,c are in AP, thus \[a + c = 2b\]
\[ = \dfrac{{\sqrt s \left( {2s - 2b} \right)}}{{\sqrt {\left( {s - b} \right)\left( {s - c} \right)\left( {s - a} \right)} }}\]
\[ = 2\dfrac{{\sqrt s \left( {s - b} \right)}}{{\sqrt {\left( {s - b} \right)\left( {s - c} \right)\left( {s - a} \right)} }}\]
\[ = 2\dfrac{{\sqrt {s{{\left( {s - b} \right)}^2}} }}{{\sqrt {\left( {s - b} \right)\left( {s - c} \right)\left( {s - a} \right)} }}\]
\[ = 2\dfrac{{\sqrt {s\left( {s - b} \right)} }}{{\sqrt {\left( {s - c} \right)\left( {s - a} \right)} }}\]
We know that, \[\sin \dfrac{B}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \] and \[\cos \dfrac{B}{2} = \sqrt {\dfrac{{s\left( {s - b} \right)}}{{ac}}} \] . So \[\cot \dfrac{B}{2} = \dfrac{{\sqrt {s\left( {s - b} \right)} }}{{\sqrt {\left( {s - c} \right)\left( {s - a} \right)} }}\]
\[ = 2\cot \dfrac{B}{2}\]
Thus, our assumption is correct.
Hence option C is the correct answer.
Note: Students often make the mistake of considering that the cotangent of its half the angles in G.P or H.P. First, we will check it for A.P. Then after that we will check other progressions.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets
