
If the sides of a triangle are in A.P., then the cotangent of its half the angles will be in
A. H.P.
B. G.P.
C. A.P.
D. None of these
Answer
216.3k+ views
Hint: First we will assume that the cotangent of its half the angles are in A.P. Then check whether the progression is in A.P. or not using different laws of half angles of cosines and sine.
Formula used:
If a, b, c are in A.P., then a + c =2b.
Half angle formula for an oblique triangle
\[\sin \dfrac{A}{2} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} \]
\[\sin \dfrac{B}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \]
\[\sin \dfrac{C}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} \]
\[\cos \dfrac{A}{2} = \sqrt {\dfrac{{s\left( {s - a} \right)}}{{bc}}} \]
\[\cos \dfrac{B}{2} = \sqrt {\dfrac{{s\left( {s - b} \right)}}{{ac}}} \]
\[\cos \dfrac{C}{2} = \sqrt {\dfrac{{s\left( {s - c} \right)}}{{ab}}} \]
Complete step by step solution:
Assume that, \[\cot \dfrac{A}{2}\], \[\cot \dfrac{B}{2}\], \[\cot \dfrac{C}{2}\]are in A.P.
Thus, \[\cot \dfrac{A}{2} + \cot \dfrac{C}{2} = 2\cot \dfrac{B}{2}\]
L.H.S\[ = \cot \dfrac{A}{2} + \cot \dfrac{C}{2}\]
Apply the formula \[\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}\]
\[ = \dfrac{{\cos \dfrac{A}{2}}}{{\sin \dfrac{A}{2}}} + \dfrac{{\cos \dfrac{C}{2}}}{{\sin \dfrac{C}{2}}}\]
Now we will apply the half angle formula
\[ = \dfrac{{\sqrt {\dfrac{{s\left( {s - a} \right)}}{{bc}}} }}{{\sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} }} + \dfrac{{\sqrt {\dfrac{{s\left( {s - c} \right)}}{{ab}}} }}{{\sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} }}\]
\[ = \dfrac{{\sqrt {s\left( {s - a} \right)} }}{{\sqrt {\left( {s - b} \right)\left( {s - c} \right)} }} + \dfrac{{\sqrt {s\left( {s - c} \right)} }}{{\sqrt {\left( {s - a} \right)\left( {s - b} \right)} }}\]
\[ = \dfrac{{\sqrt {s{{\left( {s - a} \right)}^2}} + \sqrt {s{{\left( {s - c} \right)}^2}} }}{{\sqrt {\left( {s - b} \right)\left( {s - c} \right)\left( {s - a} \right)} }}\]
\[ = \dfrac{{\sqrt s \left[ {\left( {s - a} \right) + \left( {s - c} \right)} \right]}}{{\sqrt {\left( {s - b} \right)\left( {s - c} \right)\left( {s - a} \right)} }}\]
\[ = \dfrac{{\sqrt s \left[ {2s - a - c} \right]}}{{\sqrt {\left( {s - b} \right)\left( {s - c} \right)\left( {s - a} \right)} }}\]
Given that, a,b,c are in AP, thus \[a + c = 2b\]
\[ = \dfrac{{\sqrt s \left( {2s - 2b} \right)}}{{\sqrt {\left( {s - b} \right)\left( {s - c} \right)\left( {s - a} \right)} }}\]
\[ = 2\dfrac{{\sqrt s \left( {s - b} \right)}}{{\sqrt {\left( {s - b} \right)\left( {s - c} \right)\left( {s - a} \right)} }}\]
\[ = 2\dfrac{{\sqrt {s{{\left( {s - b} \right)}^2}} }}{{\sqrt {\left( {s - b} \right)\left( {s - c} \right)\left( {s - a} \right)} }}\]
\[ = 2\dfrac{{\sqrt {s\left( {s - b} \right)} }}{{\sqrt {\left( {s - c} \right)\left( {s - a} \right)} }}\]
We know that, \[\sin \dfrac{B}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \] and \[\cos \dfrac{B}{2} = \sqrt {\dfrac{{s\left( {s - b} \right)}}{{ac}}} \] . So \[\cot \dfrac{B}{2} = \dfrac{{\sqrt {s\left( {s - b} \right)} }}{{\sqrt {\left( {s - c} \right)\left( {s - a} \right)} }}\]
\[ = 2\cot \dfrac{B}{2}\]
Thus, our assumption is correct.
Hence option C is the correct answer.
Note: Students often make the mistake of considering that the cotangent of its half the angles in G.P or H.P. First, we will check it for A.P. Then after that we will check other progressions.
Formula used:
If a, b, c are in A.P., then a + c =2b.
Half angle formula for an oblique triangle
\[\sin \dfrac{A}{2} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} \]
\[\sin \dfrac{B}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \]
\[\sin \dfrac{C}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} \]
\[\cos \dfrac{A}{2} = \sqrt {\dfrac{{s\left( {s - a} \right)}}{{bc}}} \]
\[\cos \dfrac{B}{2} = \sqrt {\dfrac{{s\left( {s - b} \right)}}{{ac}}} \]
\[\cos \dfrac{C}{2} = \sqrt {\dfrac{{s\left( {s - c} \right)}}{{ab}}} \]
Complete step by step solution:
Assume that, \[\cot \dfrac{A}{2}\], \[\cot \dfrac{B}{2}\], \[\cot \dfrac{C}{2}\]are in A.P.
Thus, \[\cot \dfrac{A}{2} + \cot \dfrac{C}{2} = 2\cot \dfrac{B}{2}\]
L.H.S\[ = \cot \dfrac{A}{2} + \cot \dfrac{C}{2}\]
Apply the formula \[\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}\]
\[ = \dfrac{{\cos \dfrac{A}{2}}}{{\sin \dfrac{A}{2}}} + \dfrac{{\cos \dfrac{C}{2}}}{{\sin \dfrac{C}{2}}}\]
Now we will apply the half angle formula
\[ = \dfrac{{\sqrt {\dfrac{{s\left( {s - a} \right)}}{{bc}}} }}{{\sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} }} + \dfrac{{\sqrt {\dfrac{{s\left( {s - c} \right)}}{{ab}}} }}{{\sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} }}\]
\[ = \dfrac{{\sqrt {s\left( {s - a} \right)} }}{{\sqrt {\left( {s - b} \right)\left( {s - c} \right)} }} + \dfrac{{\sqrt {s\left( {s - c} \right)} }}{{\sqrt {\left( {s - a} \right)\left( {s - b} \right)} }}\]
\[ = \dfrac{{\sqrt {s{{\left( {s - a} \right)}^2}} + \sqrt {s{{\left( {s - c} \right)}^2}} }}{{\sqrt {\left( {s - b} \right)\left( {s - c} \right)\left( {s - a} \right)} }}\]
\[ = \dfrac{{\sqrt s \left[ {\left( {s - a} \right) + \left( {s - c} \right)} \right]}}{{\sqrt {\left( {s - b} \right)\left( {s - c} \right)\left( {s - a} \right)} }}\]
\[ = \dfrac{{\sqrt s \left[ {2s - a - c} \right]}}{{\sqrt {\left( {s - b} \right)\left( {s - c} \right)\left( {s - a} \right)} }}\]
Given that, a,b,c are in AP, thus \[a + c = 2b\]
\[ = \dfrac{{\sqrt s \left( {2s - 2b} \right)}}{{\sqrt {\left( {s - b} \right)\left( {s - c} \right)\left( {s - a} \right)} }}\]
\[ = 2\dfrac{{\sqrt s \left( {s - b} \right)}}{{\sqrt {\left( {s - b} \right)\left( {s - c} \right)\left( {s - a} \right)} }}\]
\[ = 2\dfrac{{\sqrt {s{{\left( {s - b} \right)}^2}} }}{{\sqrt {\left( {s - b} \right)\left( {s - c} \right)\left( {s - a} \right)} }}\]
\[ = 2\dfrac{{\sqrt {s\left( {s - b} \right)} }}{{\sqrt {\left( {s - c} \right)\left( {s - a} \right)} }}\]
We know that, \[\sin \dfrac{B}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \] and \[\cos \dfrac{B}{2} = \sqrt {\dfrac{{s\left( {s - b} \right)}}{{ac}}} \] . So \[\cot \dfrac{B}{2} = \dfrac{{\sqrt {s\left( {s - b} \right)} }}{{\sqrt {\left( {s - c} \right)\left( {s - a} \right)} }}\]
\[ = 2\cot \dfrac{B}{2}\]
Thus, our assumption is correct.
Hence option C is the correct answer.
Note: Students often make the mistake of considering that the cotangent of its half the angles in G.P or H.P. First, we will check it for A.P. Then after that we will check other progressions.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

