
If the points with position vectors \[60\widehat i + 3\widehat j\], \[40\widehat i - 8\widehat j\], and \[a\widehat i - 52\widehat j\] are collinear then \[a\] is equal to
A. \[ - 40\]
B. \[ - 20\]
C. \[40\]
D. \[20\]
Answer
163.2k+ views
Hint: In this question, we are asked to find the value of \[a\]. For that, we first assume the given position vectors to \[A\], \[B\], and \[C\] then find the value of \[\overrightarrow {AB} \] and \[\overrightarrow {BC} \] then substitute the value of \[A\], \[B\], and \[C\] in \[\overrightarrow {AB} \] and \[\overrightarrow {BC} \] then take its determinant to find the required value.
Complete step-by-step solution:
We are given three position vectors
\[60\widehat i + 3\widehat j\], \[40\widehat i - 8\widehat j\] and \[a\widehat i - 52\widehat j\]
Now we assume the position vector as
\[
A = 60\widehat i + 3\widehat j\,\,...\left( 1 \right) \\
B = 40\widehat i - 8\widehat j\,\,...\left( 2 \right) \\
C = a\widehat i - 52\widehat j\,\,...\left( 3 \right)
\]
Now the value of \[\overrightarrow {AB} \] is
\[\overrightarrow {AB} = \overrightarrow B - \overrightarrow A \,\,\,...\left( 4 \right)\]
Now we substitute the value of \[\overrightarrow A \] and \[\overrightarrow B \,\] from equation (1) and equation (2) in equation (4), and we get
\[
\overrightarrow {AB} = 40\widehat i - 8\widehat j - \left( {60\widehat i + 3\widehat j} \right) \\
= 40\widehat i - 8\widehat j - 60\widehat i - 3\widehat j \\
= - 20\widehat i - 11\widehat j
\]
Now the value of \[\overrightarrow {BC} \] is
\[\overrightarrow {BC} = \overrightarrow C - \overrightarrow B \,\,...\left( 5 \right)\]
Now we substitute the value of \[\overrightarrow C \,\] and \[\overrightarrow B \,\] from equation (2) and equation (3) in equation (5), and we get
\[
\overrightarrow {BC} = a\widehat i - 52\widehat j - \left( {40\widehat i - 8\widehat j\,} \right) \\
= a\widehat i - 52\widehat j\, - 40\widehat i + 8\widehat j\, \\
= \left( {a - 40} \right)\widehat i\,\, - 44\widehat j\,
\]
Now, we know that if the vector \[A = {a_1}\widehat i + {a_2}\widehat j\] and \[B = {b_1}\widehat i + {b_2}\widehat j\] are collinear, then
\[\left| {\begin{matrix}
{{a_1}}&{{a_2}} \\
{{b_1}}&{{b_2}}
\end{matrix}} \right|\, = 0\]
Now it is given that A, B, C are collinear
So, \[\left| {\begin{matrix}
{ - 20}&{ - 11} \\
{a - 40}&{ - 44}
\end{matrix}} \right|\, = 0\]
Now we find the determinant of the above equation, we get
\[
\left( { - 20} \right) \times \left( { - 44} \right) - \left[ {\left( {a - 40} \right) \times \left( { - 11} \right)} \right]\, = 0 \\
880 - \left[ { - 11a + 440} \right] = 0 \\
880 + 11a - 440 = 0 \\
440 + 11a = 0
\]
Further solving we get
\[
11a = - 440 \\
a = - \dfrac{{440}}{{11}} \\
= - 40
\]
Therefore, If the points with position vectors \[60\widehat i + 3\widehat j\], \[40\widehat i - 8\widehat j\], and \[a\widehat i - 52\widehat j\] are collinear then \[a\] is equal to \[ - 40\].
Hence, option(A) is correct answer
Note: Students frequently make errors when calculating the determinant and enter incorrect signs, resulting in an incorrect answer. As a result, he or she must repeat the entire process to obtain the desired result.
Complete step-by-step solution:
We are given three position vectors
\[60\widehat i + 3\widehat j\], \[40\widehat i - 8\widehat j\] and \[a\widehat i - 52\widehat j\]
Now we assume the position vector as
\[
A = 60\widehat i + 3\widehat j\,\,...\left( 1 \right) \\
B = 40\widehat i - 8\widehat j\,\,...\left( 2 \right) \\
C = a\widehat i - 52\widehat j\,\,...\left( 3 \right)
\]
Now the value of \[\overrightarrow {AB} \] is
\[\overrightarrow {AB} = \overrightarrow B - \overrightarrow A \,\,\,...\left( 4 \right)\]
Now we substitute the value of \[\overrightarrow A \] and \[\overrightarrow B \,\] from equation (1) and equation (2) in equation (4), and we get
\[
\overrightarrow {AB} = 40\widehat i - 8\widehat j - \left( {60\widehat i + 3\widehat j} \right) \\
= 40\widehat i - 8\widehat j - 60\widehat i - 3\widehat j \\
= - 20\widehat i - 11\widehat j
\]
Now the value of \[\overrightarrow {BC} \] is
\[\overrightarrow {BC} = \overrightarrow C - \overrightarrow B \,\,...\left( 5 \right)\]
Now we substitute the value of \[\overrightarrow C \,\] and \[\overrightarrow B \,\] from equation (2) and equation (3) in equation (5), and we get
\[
\overrightarrow {BC} = a\widehat i - 52\widehat j - \left( {40\widehat i - 8\widehat j\,} \right) \\
= a\widehat i - 52\widehat j\, - 40\widehat i + 8\widehat j\, \\
= \left( {a - 40} \right)\widehat i\,\, - 44\widehat j\,
\]
Now, we know that if the vector \[A = {a_1}\widehat i + {a_2}\widehat j\] and \[B = {b_1}\widehat i + {b_2}\widehat j\] are collinear, then
\[\left| {\begin{matrix}
{{a_1}}&{{a_2}} \\
{{b_1}}&{{b_2}}
\end{matrix}} \right|\, = 0\]
Now it is given that A, B, C are collinear
So, \[\left| {\begin{matrix}
{ - 20}&{ - 11} \\
{a - 40}&{ - 44}
\end{matrix}} \right|\, = 0\]
Now we find the determinant of the above equation, we get
\[
\left( { - 20} \right) \times \left( { - 44} \right) - \left[ {\left( {a - 40} \right) \times \left( { - 11} \right)} \right]\, = 0 \\
880 - \left[ { - 11a + 440} \right] = 0 \\
880 + 11a - 440 = 0 \\
440 + 11a = 0
\]
Further solving we get
\[
11a = - 440 \\
a = - \dfrac{{440}}{{11}} \\
= - 40
\]
Therefore, If the points with position vectors \[60\widehat i + 3\widehat j\], \[40\widehat i - 8\widehat j\], and \[a\widehat i - 52\widehat j\] are collinear then \[a\] is equal to \[ - 40\].
Hence, option(A) is correct answer
Note: Students frequently make errors when calculating the determinant and enter incorrect signs, resulting in an incorrect answer. As a result, he or she must repeat the entire process to obtain the desired result.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
