
If the points $\left( {x + 1,2} \right),\left( {1,x + 2} \right)$ and $\left( {\dfrac{1}{{x + 1}},\dfrac{2}{{x + 1}}} \right)$ are collinear, what is the value of $x$?
A. $4$
B. $0$
C. $ - 4$
D. None of these
Answer
232.8k+ views
Hint: Collinear points are those points which lie on a same straight line. Find the area of the triangle made by the given three points as vertices. Since the points are collinear, so area of the triangle is equal to zero. Using this concept, you’ll obtain an equation and solving the equation you’ll get the value of $x$.
Formula Used:
Area of a triangle having coordinates of the vertices $A\left( {{x_1},{y_1}} \right),B\left( {{x_2},{y_2}} \right),C\left( {{x_3},{y_3}} \right)$ is given by $\dfrac{1}{2}\left| {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right|$ square units.
Complete step by step solution:
Here the coordinates of the vertices are $\left( {x + 1,2} \right),\left( {1,x + 2} \right)$ and $\left( {\dfrac{1}{{x + 1}},\dfrac{2}{{x + 1}}} \right)$.
Let be the triangle in which $A = \left( {x + 1,2} \right),B = \left( {1,x + 2} \right)$ and $C = \left( {\dfrac{1}{{x + 1}},\dfrac{2}{{x + 1}}} \right)$
So, ${x_1} = x + 1,{y_1} = 2,{x_2} = 1,{y_2} = x + 2,{x_3} = \dfrac{1}{{x + 1}},{y_3} = \dfrac{2}{{x + 1}}$
Substitute these values in the formula.
Area of is
$\dfrac{1}{2}\left| {\left( {x + 1} \right)\left\{ {\left( {x + 2} \right) - \left( {\dfrac{2}{{x + 1}}} \right)} \right\} + \left( 1 \right)\left\{ {\left( {\dfrac{2}{{x + 1}}} \right) - \left( 2 \right)} \right\} + \left( {\dfrac{1}{{x + 1}}} \right)\left\{ {\left( 2 \right) - \left( {x + 2} \right)} \right\}} \right|\\ = \dfrac{1}{2}\left| {\left( {x + 1} \right)\left\{ {\dfrac{{\left( {x + 1} \right)\left( {x + 2} \right) - 2}}{{x + 1}}} \right\} + \left( 1 \right)\left\{ {\dfrac{{2 - 2\left( {x + 1} \right)}}{{x + 1}}} \right\} + \left( {\dfrac{1}{{x + 1}}} \right)\left( {2 - x - 2} \right)} \right|\\ = \dfrac{1}{2}\left| {\left( {x + 1} \right)\left\{ {\dfrac{{{x^2} + x + 2x + 2 - 2}}{{x + 1}}} \right\} + \left( 1 \right)\left\{ {\dfrac{{2 - 2x - 2}}{{x + 1}}} \right\} + \left( {\dfrac{1}{{x + 1}}} \right)\left( { - x} \right)} \right|\\ = \dfrac{1}{2}\left| {\left( {x + 1} \right)\left\{ {\dfrac{{{x^2} + 3x}}{{x + 1}}} \right\} + \left( 1 \right)\left\{ {\dfrac{{ - 2x}}{{x + 1}}} \right\} + \left( {\dfrac{{ - x}}{{x + 1}}} \right)} \right|\\ = \dfrac{1}{2}\left| {\left( {{x^2} + 3x} \right) + \left( {\dfrac{{ - 2x}}{{x + 1}}} \right) + \left( {\dfrac{{ - x}}{{x + 1}}} \right)} \right|\\ = \dfrac{1}{2}\left| {{x^2} + 3x - \dfrac{{2x}}{{x + 1}} - \dfrac{x}{{x + 1}}} \right|\\ = \dfrac{1}{2}\left| {\dfrac{{\left( {{x^2} + 3x} \right)\left( {x + 1} \right) - 2x - x}}{{x + 1}}} \right|\\ = \dfrac{1}{2}\left| {\dfrac{{{x^3} + 3{x^2} + {x^2} + 3x - 3x}}{{x + 1}}} \right|\\ = \dfrac{1}{2}\left| {\dfrac{{{x^3} + 4{x^2}}}{{x + 1}}} \right|$
The given points being collinear, the area of the triangle is equal to zero.
So,
$\dfrac{1}{2}\left| {\dfrac{{{x^3} + 4{x^2}}}{{x + 1}}} \right| = 0\\ \Rightarrow \left| {\dfrac{{{x^3} + 4{x^2}}}{{x + 1}}} \right| = 0$
Modulus of an expression is equal to zero if the expression itself is equal to zero.
$ \Rightarrow \dfrac{{{x^3} + 4{x^2}}}{{x + 1}} = 0\\ \Rightarrow {x^3} + 4{x^2} = 0$
Factorize the expression on the left hand side of the equation.
$ \Rightarrow {x^2}\left( {x + 4} \right) = 0$
Product of two factors is equal to zero if any of the factors is equal to zero.
$ \Rightarrow {x^2} = 0$ or $x + 4 = 0$
Solve these two equations for $x$.
${x^2} = 0 \Rightarrow x = 0$
or,
$x + 4 = 0 \Rightarrow x = - 4$
Finally, we get $x = 0, - 4$
Option ‘B’ and ‘C’ is correct
Note: Area of a triangle is equal to zero. It means that actually no triangle can’t be made by the three points as the vertices. Area of an actual triangle is always positive. Modulus of any expression is equal to zero if the expression itself is equal to zero.
Formula Used:
Area of a triangle having coordinates of the vertices $A\left( {{x_1},{y_1}} \right),B\left( {{x_2},{y_2}} \right),C\left( {{x_3},{y_3}} \right)$ is given by $\dfrac{1}{2}\left| {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right|$ square units.
Complete step by step solution:
Here the coordinates of the vertices are $\left( {x + 1,2} \right),\left( {1,x + 2} \right)$ and $\left( {\dfrac{1}{{x + 1}},\dfrac{2}{{x + 1}}} \right)$.
Let be the triangle in which $A = \left( {x + 1,2} \right),B = \left( {1,x + 2} \right)$ and $C = \left( {\dfrac{1}{{x + 1}},\dfrac{2}{{x + 1}}} \right)$
So, ${x_1} = x + 1,{y_1} = 2,{x_2} = 1,{y_2} = x + 2,{x_3} = \dfrac{1}{{x + 1}},{y_3} = \dfrac{2}{{x + 1}}$
Substitute these values in the formula.
Area of is
$\dfrac{1}{2}\left| {\left( {x + 1} \right)\left\{ {\left( {x + 2} \right) - \left( {\dfrac{2}{{x + 1}}} \right)} \right\} + \left( 1 \right)\left\{ {\left( {\dfrac{2}{{x + 1}}} \right) - \left( 2 \right)} \right\} + \left( {\dfrac{1}{{x + 1}}} \right)\left\{ {\left( 2 \right) - \left( {x + 2} \right)} \right\}} \right|\\ = \dfrac{1}{2}\left| {\left( {x + 1} \right)\left\{ {\dfrac{{\left( {x + 1} \right)\left( {x + 2} \right) - 2}}{{x + 1}}} \right\} + \left( 1 \right)\left\{ {\dfrac{{2 - 2\left( {x + 1} \right)}}{{x + 1}}} \right\} + \left( {\dfrac{1}{{x + 1}}} \right)\left( {2 - x - 2} \right)} \right|\\ = \dfrac{1}{2}\left| {\left( {x + 1} \right)\left\{ {\dfrac{{{x^2} + x + 2x + 2 - 2}}{{x + 1}}} \right\} + \left( 1 \right)\left\{ {\dfrac{{2 - 2x - 2}}{{x + 1}}} \right\} + \left( {\dfrac{1}{{x + 1}}} \right)\left( { - x} \right)} \right|\\ = \dfrac{1}{2}\left| {\left( {x + 1} \right)\left\{ {\dfrac{{{x^2} + 3x}}{{x + 1}}} \right\} + \left( 1 \right)\left\{ {\dfrac{{ - 2x}}{{x + 1}}} \right\} + \left( {\dfrac{{ - x}}{{x + 1}}} \right)} \right|\\ = \dfrac{1}{2}\left| {\left( {{x^2} + 3x} \right) + \left( {\dfrac{{ - 2x}}{{x + 1}}} \right) + \left( {\dfrac{{ - x}}{{x + 1}}} \right)} \right|\\ = \dfrac{1}{2}\left| {{x^2} + 3x - \dfrac{{2x}}{{x + 1}} - \dfrac{x}{{x + 1}}} \right|\\ = \dfrac{1}{2}\left| {\dfrac{{\left( {{x^2} + 3x} \right)\left( {x + 1} \right) - 2x - x}}{{x + 1}}} \right|\\ = \dfrac{1}{2}\left| {\dfrac{{{x^3} + 3{x^2} + {x^2} + 3x - 3x}}{{x + 1}}} \right|\\ = \dfrac{1}{2}\left| {\dfrac{{{x^3} + 4{x^2}}}{{x + 1}}} \right|$
The given points being collinear, the area of the triangle is equal to zero.
So,
$\dfrac{1}{2}\left| {\dfrac{{{x^3} + 4{x^2}}}{{x + 1}}} \right| = 0\\ \Rightarrow \left| {\dfrac{{{x^3} + 4{x^2}}}{{x + 1}}} \right| = 0$
Modulus of an expression is equal to zero if the expression itself is equal to zero.
$ \Rightarrow \dfrac{{{x^3} + 4{x^2}}}{{x + 1}} = 0\\ \Rightarrow {x^3} + 4{x^2} = 0$
Factorize the expression on the left hand side of the equation.
$ \Rightarrow {x^2}\left( {x + 4} \right) = 0$
Product of two factors is equal to zero if any of the factors is equal to zero.
$ \Rightarrow {x^2} = 0$ or $x + 4 = 0$
Solve these two equations for $x$.
${x^2} = 0 \Rightarrow x = 0$
or,
$x + 4 = 0 \Rightarrow x = - 4$
Finally, we get $x = 0, - 4$
Option ‘B’ and ‘C’ is correct
Note: Area of a triangle is equal to zero. It means that actually no triangle can’t be made by the three points as the vertices. Area of an actual triangle is always positive. Modulus of any expression is equal to zero if the expression itself is equal to zero.
Recently Updated Pages
States of Matter Chapter For JEE Main Chemistry

Mutually Exclusive vs Independent Events: Key Differences Explained

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

[Awaiting the three content sources: Ask AI Response, Competitor 1 Content, and Competitor 2 Content. Please provide those to continue with the analysis and optimization.]

Sign up for JEE Main 2026 Live Classes - Vedantu

JEE Main 2026 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Inductive Effect and Its Role in Acidic Strength

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

