
If the points $\left( {x + 1,2} \right),\left( {1,x + 2} \right)$ and $\left( {\dfrac{1}{{x + 1}},\dfrac{2}{{x + 1}}} \right)$ are collinear, what is the value of $x$?
A. $4$
B. $0$
C. $ - 4$
D. None of these
Answer
162k+ views
Hint: Collinear points are those points which lie on a same straight line. Find the area of the triangle made by the given three points as vertices. Since the points are collinear, so area of the triangle is equal to zero. Using this concept, you’ll obtain an equation and solving the equation you’ll get the value of $x$.
Formula Used:
Area of a triangle having coordinates of the vertices $A\left( {{x_1},{y_1}} \right),B\left( {{x_2},{y_2}} \right),C\left( {{x_3},{y_3}} \right)$ is given by $\dfrac{1}{2}\left| {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right|$ square units.
Complete step by step solution:
Here the coordinates of the vertices are $\left( {x + 1,2} \right),\left( {1,x + 2} \right)$ and $\left( {\dfrac{1}{{x + 1}},\dfrac{2}{{x + 1}}} \right)$.
Let be the triangle in which $A = \left( {x + 1,2} \right),B = \left( {1,x + 2} \right)$ and $C = \left( {\dfrac{1}{{x + 1}},\dfrac{2}{{x + 1}}} \right)$
So, ${x_1} = x + 1,{y_1} = 2,{x_2} = 1,{y_2} = x + 2,{x_3} = \dfrac{1}{{x + 1}},{y_3} = \dfrac{2}{{x + 1}}$
Substitute these values in the formula.
Area of is
$\dfrac{1}{2}\left| {\left( {x + 1} \right)\left\{ {\left( {x + 2} \right) - \left( {\dfrac{2}{{x + 1}}} \right)} \right\} + \left( 1 \right)\left\{ {\left( {\dfrac{2}{{x + 1}}} \right) - \left( 2 \right)} \right\} + \left( {\dfrac{1}{{x + 1}}} \right)\left\{ {\left( 2 \right) - \left( {x + 2} \right)} \right\}} \right|\\ = \dfrac{1}{2}\left| {\left( {x + 1} \right)\left\{ {\dfrac{{\left( {x + 1} \right)\left( {x + 2} \right) - 2}}{{x + 1}}} \right\} + \left( 1 \right)\left\{ {\dfrac{{2 - 2\left( {x + 1} \right)}}{{x + 1}}} \right\} + \left( {\dfrac{1}{{x + 1}}} \right)\left( {2 - x - 2} \right)} \right|\\ = \dfrac{1}{2}\left| {\left( {x + 1} \right)\left\{ {\dfrac{{{x^2} + x + 2x + 2 - 2}}{{x + 1}}} \right\} + \left( 1 \right)\left\{ {\dfrac{{2 - 2x - 2}}{{x + 1}}} \right\} + \left( {\dfrac{1}{{x + 1}}} \right)\left( { - x} \right)} \right|\\ = \dfrac{1}{2}\left| {\left( {x + 1} \right)\left\{ {\dfrac{{{x^2} + 3x}}{{x + 1}}} \right\} + \left( 1 \right)\left\{ {\dfrac{{ - 2x}}{{x + 1}}} \right\} + \left( {\dfrac{{ - x}}{{x + 1}}} \right)} \right|\\ = \dfrac{1}{2}\left| {\left( {{x^2} + 3x} \right) + \left( {\dfrac{{ - 2x}}{{x + 1}}} \right) + \left( {\dfrac{{ - x}}{{x + 1}}} \right)} \right|\\ = \dfrac{1}{2}\left| {{x^2} + 3x - \dfrac{{2x}}{{x + 1}} - \dfrac{x}{{x + 1}}} \right|\\ = \dfrac{1}{2}\left| {\dfrac{{\left( {{x^2} + 3x} \right)\left( {x + 1} \right) - 2x - x}}{{x + 1}}} \right|\\ = \dfrac{1}{2}\left| {\dfrac{{{x^3} + 3{x^2} + {x^2} + 3x - 3x}}{{x + 1}}} \right|\\ = \dfrac{1}{2}\left| {\dfrac{{{x^3} + 4{x^2}}}{{x + 1}}} \right|$
The given points being collinear, the area of the triangle is equal to zero.
So,
$\dfrac{1}{2}\left| {\dfrac{{{x^3} + 4{x^2}}}{{x + 1}}} \right| = 0\\ \Rightarrow \left| {\dfrac{{{x^3} + 4{x^2}}}{{x + 1}}} \right| = 0$
Modulus of an expression is equal to zero if the expression itself is equal to zero.
$ \Rightarrow \dfrac{{{x^3} + 4{x^2}}}{{x + 1}} = 0\\ \Rightarrow {x^3} + 4{x^2} = 0$
Factorize the expression on the left hand side of the equation.
$ \Rightarrow {x^2}\left( {x + 4} \right) = 0$
Product of two factors is equal to zero if any of the factors is equal to zero.
$ \Rightarrow {x^2} = 0$ or $x + 4 = 0$
Solve these two equations for $x$.
${x^2} = 0 \Rightarrow x = 0$
or,
$x + 4 = 0 \Rightarrow x = - 4$
Finally, we get $x = 0, - 4$
Option ‘B’ and ‘C’ is correct
Note: Area of a triangle is equal to zero. It means that actually no triangle can’t be made by the three points as the vertices. Area of an actual triangle is always positive. Modulus of any expression is equal to zero if the expression itself is equal to zero.
Formula Used:
Area of a triangle having coordinates of the vertices $A\left( {{x_1},{y_1}} \right),B\left( {{x_2},{y_2}} \right),C\left( {{x_3},{y_3}} \right)$ is given by $\dfrac{1}{2}\left| {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right|$ square units.
Complete step by step solution:
Here the coordinates of the vertices are $\left( {x + 1,2} \right),\left( {1,x + 2} \right)$ and $\left( {\dfrac{1}{{x + 1}},\dfrac{2}{{x + 1}}} \right)$.
Let be the triangle in which $A = \left( {x + 1,2} \right),B = \left( {1,x + 2} \right)$ and $C = \left( {\dfrac{1}{{x + 1}},\dfrac{2}{{x + 1}}} \right)$
So, ${x_1} = x + 1,{y_1} = 2,{x_2} = 1,{y_2} = x + 2,{x_3} = \dfrac{1}{{x + 1}},{y_3} = \dfrac{2}{{x + 1}}$
Substitute these values in the formula.
Area of is
$\dfrac{1}{2}\left| {\left( {x + 1} \right)\left\{ {\left( {x + 2} \right) - \left( {\dfrac{2}{{x + 1}}} \right)} \right\} + \left( 1 \right)\left\{ {\left( {\dfrac{2}{{x + 1}}} \right) - \left( 2 \right)} \right\} + \left( {\dfrac{1}{{x + 1}}} \right)\left\{ {\left( 2 \right) - \left( {x + 2} \right)} \right\}} \right|\\ = \dfrac{1}{2}\left| {\left( {x + 1} \right)\left\{ {\dfrac{{\left( {x + 1} \right)\left( {x + 2} \right) - 2}}{{x + 1}}} \right\} + \left( 1 \right)\left\{ {\dfrac{{2 - 2\left( {x + 1} \right)}}{{x + 1}}} \right\} + \left( {\dfrac{1}{{x + 1}}} \right)\left( {2 - x - 2} \right)} \right|\\ = \dfrac{1}{2}\left| {\left( {x + 1} \right)\left\{ {\dfrac{{{x^2} + x + 2x + 2 - 2}}{{x + 1}}} \right\} + \left( 1 \right)\left\{ {\dfrac{{2 - 2x - 2}}{{x + 1}}} \right\} + \left( {\dfrac{1}{{x + 1}}} \right)\left( { - x} \right)} \right|\\ = \dfrac{1}{2}\left| {\left( {x + 1} \right)\left\{ {\dfrac{{{x^2} + 3x}}{{x + 1}}} \right\} + \left( 1 \right)\left\{ {\dfrac{{ - 2x}}{{x + 1}}} \right\} + \left( {\dfrac{{ - x}}{{x + 1}}} \right)} \right|\\ = \dfrac{1}{2}\left| {\left( {{x^2} + 3x} \right) + \left( {\dfrac{{ - 2x}}{{x + 1}}} \right) + \left( {\dfrac{{ - x}}{{x + 1}}} \right)} \right|\\ = \dfrac{1}{2}\left| {{x^2} + 3x - \dfrac{{2x}}{{x + 1}} - \dfrac{x}{{x + 1}}} \right|\\ = \dfrac{1}{2}\left| {\dfrac{{\left( {{x^2} + 3x} \right)\left( {x + 1} \right) - 2x - x}}{{x + 1}}} \right|\\ = \dfrac{1}{2}\left| {\dfrac{{{x^3} + 3{x^2} + {x^2} + 3x - 3x}}{{x + 1}}} \right|\\ = \dfrac{1}{2}\left| {\dfrac{{{x^3} + 4{x^2}}}{{x + 1}}} \right|$
The given points being collinear, the area of the triangle is equal to zero.
So,
$\dfrac{1}{2}\left| {\dfrac{{{x^3} + 4{x^2}}}{{x + 1}}} \right| = 0\\ \Rightarrow \left| {\dfrac{{{x^3} + 4{x^2}}}{{x + 1}}} \right| = 0$
Modulus of an expression is equal to zero if the expression itself is equal to zero.
$ \Rightarrow \dfrac{{{x^3} + 4{x^2}}}{{x + 1}} = 0\\ \Rightarrow {x^3} + 4{x^2} = 0$
Factorize the expression on the left hand side of the equation.
$ \Rightarrow {x^2}\left( {x + 4} \right) = 0$
Product of two factors is equal to zero if any of the factors is equal to zero.
$ \Rightarrow {x^2} = 0$ or $x + 4 = 0$
Solve these two equations for $x$.
${x^2} = 0 \Rightarrow x = 0$
or,
$x + 4 = 0 \Rightarrow x = - 4$
Finally, we get $x = 0, - 4$
Option ‘B’ and ‘C’ is correct
Note: Area of a triangle is equal to zero. It means that actually no triangle can’t be made by the three points as the vertices. Area of an actual triangle is always positive. Modulus of any expression is equal to zero if the expression itself is equal to zero.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

1 Billion in Rupees

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE
