
If the maximum velocity and acceleration of the particle executing SHM are equal in magnitude, the time period will be
A) \[1.57\;sec\]
B) \[3.14\;sec\]
C) \[6.28\;sec\]
D) \[12.56\;sec\]
Answer
217.2k+ views
Hint:In this solution, we will use the formula of displacement of a simple harmonic oscillator to determine the equation of velocity and acceleration of the same. Since they are both equal, we will use the condition to determine the time period of oscillation.
Formula used: In this solution, we will use the following formula:
$x = A\sin (\omega t + \phi )$ where $x$ is the displacement of the oscillator, $\omega $ is the angular velocity, $t$ is the time, and $\phi $ is the phase.
Complete step by step answer:
We’ve been given that the velocity and acceleration of a simple harmonic oscillator are the same.
Now the velocity of the harmonic oscillator can be calculated using:
$v = \dfrac{{dx}}{{dt}}$
Substituting the value of $x = A\sin (\omega t + \phi )$ in the above equation, and taking the derivative, we can write
$v = A\omega \cos (\omega t + \phi )$
Similarly, the acceleration can be determined as
$a = \dfrac{{dv}}{{dt}}$
Substituting $v = A\omega \cos (\omega t + \phi )$ in the above equation, and taking the derivative, we get
$a = - A{\omega ^2}\sin (\omega t + \phi )$
Now, since the maximum velocity and the maximum acceleration are the same for our case, we can write
${v_{max}} = {a_{max}}$
$ \Rightarrow A\omega = A{\omega ^2}$
Dividing both sides, by $A\omega $, we get
$\omega = 1$
Since $\omega = \dfrac{{2\pi }}{T}$, we can write
$T = 2\pi = 6..28\,\sec $
Hence the correct choice is option (C).
Note: The maximum values of velocities of acceleration will be achieved at different positions of the simple harmonic oscillator. However, that is not of consequence to us since we are only focused on the magnitude of the maximum velocity and acceleration. Hence, we do not need to worry about the phase of the simple harmonic oscillator as well. Both the sine and the cosine functions have a maximum value of 1 which is why it corresponds to the maximum value of velocity and acceleration.
Formula used: In this solution, we will use the following formula:
$x = A\sin (\omega t + \phi )$ where $x$ is the displacement of the oscillator, $\omega $ is the angular velocity, $t$ is the time, and $\phi $ is the phase.
Complete step by step answer:
We’ve been given that the velocity and acceleration of a simple harmonic oscillator are the same.
Now the velocity of the harmonic oscillator can be calculated using:
$v = \dfrac{{dx}}{{dt}}$
Substituting the value of $x = A\sin (\omega t + \phi )$ in the above equation, and taking the derivative, we can write
$v = A\omega \cos (\omega t + \phi )$
Similarly, the acceleration can be determined as
$a = \dfrac{{dv}}{{dt}}$
Substituting $v = A\omega \cos (\omega t + \phi )$ in the above equation, and taking the derivative, we get
$a = - A{\omega ^2}\sin (\omega t + \phi )$
Now, since the maximum velocity and the maximum acceleration are the same for our case, we can write
${v_{max}} = {a_{max}}$
$ \Rightarrow A\omega = A{\omega ^2}$
Dividing both sides, by $A\omega $, we get
$\omega = 1$
Since $\omega = \dfrac{{2\pi }}{T}$, we can write
$T = 2\pi = 6..28\,\sec $
Hence the correct choice is option (C).
Note: The maximum values of velocities of acceleration will be achieved at different positions of the simple harmonic oscillator. However, that is not of consequence to us since we are only focused on the magnitude of the maximum velocity and acceleration. Hence, we do not need to worry about the phase of the simple harmonic oscillator as well. Both the sine and the cosine functions have a maximum value of 1 which is why it corresponds to the maximum value of velocity and acceleration.
Recently Updated Pages
Addition of Three Vectors: Methods & Examples

Addition of Vectors: Simple Guide for Students

Algebra Made Easy: Step-by-Step Guide for Students

Relations and Functions: Complete Guide for Students

Analytical Method of Vector Addition Explained Simply

Arithmetic, Geometric & Harmonic Progressions Explained

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Understanding Atomic Structure for Beginners

