
If the lines $\left( {p - q} \right){x^2} + 2\left( {p + q} \right)xy + \left( {q - p} \right){y^2} = 0$ are perpendicular, then which of the following options is correct?
A. $p = q$
B. $p = 0$
C. $q = 0$
D. $p$ and $q$ may have any value
Answer
161.1k+ views
Hint: A pair of straight lines, passing through the origin, are represented by a general equation of the form $a{x^2} + 2hxy + b{y^2} = 0$ . Sum of the slopes of the two lines is given by $\dfrac{{ - 2h}}{b}$ and the product of the slopes is given by $\dfrac{a}{b}$ . The angle between the two lines, $\theta $ , is calculated using the formula $\tan \theta = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$ . We will use this formula to derive the condition and use it to get the desired solution.
Formula Used: The angle between a pair of straight lines, passing through the origin, represented by $a{x^2} + 2hxy + b{y^2} = 0$ is calculated using the formula $\tan \theta = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$ .
Complete step-by-step solution:
Let us consider a general pair of straight lines, passing through the origin.
$a{x^2} + 2hxy + b{y^2} = 0$ … (1)
Let the angle between them be $\theta $ .
Now, we know that the tangent of the angle between them is given by the formula:
$\tan \theta = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$ … (2)
For the lines to be perpendicular to each other, $\theta = \dfrac{\pi }{2}$ .
Substituting this in equation (2), we get:
$\tan \dfrac{\pi }{2} = \infty = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$
From this we can conclude that:
$a + b = 0$
This gives:
$a = - b$ … (3)
Hence, for a pair of straight lines to be perpendicular to each other, $a = - b$ .
Given equation:
$\left( {p - q} \right){x^2} + 2\left( {p + q} \right)xy + \left( {q - p} \right){y^2} = 0$
Comparing the above equation with the general form, given in (1), we get:
$a = p - q,b = q - p$
Therefore, $a = - b$ .
From equation (3), we know that for two lines to be perpendicular $a = - b$ , which is satisfied with the given equation.
Hence, whatever be the values of $p$ and $q$ , the given pair of straight lines will always be perpendicular.
Thus, the correct option is D.
Note: Make sure to compare the given equation with the general equation of a pair of straight lines properly in order to get the values of the coefficients. Avoid any mistakes while substituting those values in the condition required for the lines to be perpendicular.
Formula Used: The angle between a pair of straight lines, passing through the origin, represented by $a{x^2} + 2hxy + b{y^2} = 0$ is calculated using the formula $\tan \theta = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$ .
Complete step-by-step solution:
Let us consider a general pair of straight lines, passing through the origin.
$a{x^2} + 2hxy + b{y^2} = 0$ … (1)
Let the angle between them be $\theta $ .
Now, we know that the tangent of the angle between them is given by the formula:
$\tan \theta = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$ … (2)
For the lines to be perpendicular to each other, $\theta = \dfrac{\pi }{2}$ .
Substituting this in equation (2), we get:
$\tan \dfrac{\pi }{2} = \infty = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$
From this we can conclude that:
$a + b = 0$
This gives:
$a = - b$ … (3)
Hence, for a pair of straight lines to be perpendicular to each other, $a = - b$ .
Given equation:
$\left( {p - q} \right){x^2} + 2\left( {p + q} \right)xy + \left( {q - p} \right){y^2} = 0$
Comparing the above equation with the general form, given in (1), we get:
$a = p - q,b = q - p$
Therefore, $a = - b$ .
From equation (3), we know that for two lines to be perpendicular $a = - b$ , which is satisfied with the given equation.
Hence, whatever be the values of $p$ and $q$ , the given pair of straight lines will always be perpendicular.
Thus, the correct option is D.
Note: Make sure to compare the given equation with the general equation of a pair of straight lines properly in order to get the values of the coefficients. Avoid any mistakes while substituting those values in the condition required for the lines to be perpendicular.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2026 Syllabus PDF - Download Paper 1 and 2 Syllabus by NTA

JEE Main Eligibility Criteria 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations
