
If the length of minor axis (along y-axis) of an ellipse of the standard form is $\dfrac{4}{{\sqrt 3 }}$.If this ellipse touches the line $x + 6y = 8$,then what is its eccentricity?
A. $\dfrac{1}{2}\left( {\sqrt {\dfrac{5}{3}} } \right)$
B. $\dfrac{1}{2}\left( {\sqrt {\dfrac{{11}}{3}} } \right)$
C. $\dfrac{{\sqrt 5 }}{6}$
D. $\dfrac{1}{3}\sqrt {\left( {\dfrac{{11}}{6}} \right)} $
Answer
217.8k+ views
Hint: We know the length of the minor axis of ellipse so from this we can get the value of $b$. Also, the equation of tangent is given to the ellipse, we can get the equation of tangent at any point $\left( {{x_1},{y_1}} \right)$ on ellipse by $\dfrac{{x.{x_1}}}{{{a^2}}} + \dfrac{{y.{y_1}}}{{{b^2}}} = 1$. We already know the value of $b$. On comparing the coefficient of equations of tangent to the given equation and solving them ,we can get the value of $a$.
Formula Used:
1.Eccentricity of ellipse is given by
${e^2} = 1 - \dfrac{{{b^2}}}{{{a^2}}}$
Where,
$e$ is eccentricity of ellipse
$a$ is semi major axis length of ellipse
$b$is the length of semi minor axis of ellipse
2.Equation to the tangent on ellipse $\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$ at any point $\left( {{x_1},{y_1}} \right)$is given by –
$\dfrac{{x.{x_1}}}{{{a^2}}} + \dfrac{{y.{y_1}}}{{{b^2}}} = 1$
Complete step by step solution:
Given – Length of major axis =$\dfrac{4}{{\sqrt 3 }}$
$2b = \dfrac{4}{{\sqrt 3 }}$
$b = \dfrac{2}{{\sqrt 3 }}$
Now equation of tangent at a point $\left( {{x_1},{y_1}} \right)$is given can be written as
$\dfrac{{x.{x_1}}}{{{a^2}}} + \dfrac{{y.{y_1}}}{{{b^2}}} = 1$
Substituting the value of $b = \dfrac{2}{{\sqrt 3 }}$ in the above equation
$\dfrac{{x.{x_1}}}{{{a^2}}} + \dfrac{{y.{y_1}}}{{{{\left( {\dfrac{2}{{\sqrt 3 }}} \right)}^2}}} = 1$
$ \Rightarrow \dfrac{{x.{x_1}}}{{{a^2}}} + \dfrac{{3y.{y_1}}}{4} = 1$ (1)
Given equation of tangent is –
$x + 6y = 8$
$ \Rightarrow \dfrac{x}{8} + \dfrac{3}{4}y = 1$ (2)
Equation (1) and (2) represents same equations so on comparing them
$\dfrac{{{x_1}}}{{{a^2}}} = \dfrac{1}{8}$
On cross multiplying the equation –
${x_1} = \dfrac{{{a^2}}}{8}$ (3)
Also, by comparing the coefficients of Y in equation (1) and (2)
$\dfrac{{3{y_1}}}{4} = \dfrac{3}{4}$
$ \Rightarrow {y_1} = 1$
Point $\left( {{x_1},{y_1}} \right)$lies on ellipse so –
$\dfrac{{{{\left( {\dfrac{{{a^2}}}{8}} \right)}^2}}}{{{a^2}}}\,\,\,\,\, + \,\,\,\dfrac{{{{\left( 1 \right)}^2}}}{{{{\left( {\dfrac{2}{{\sqrt 3 }}} \right)}^2}}} = 1$
$ \Rightarrow \dfrac{{{a^2}}}{{64}} + \dfrac{3}{4} = 1$
$ \Rightarrow \dfrac{{{a^2}}}{{64}} = \dfrac{1}{4}$
$ \Rightarrow {a^2} = \dfrac{{64}}{4}$
$ \Rightarrow \,{a^2} = 16$
Now eccentricity of ellipse is given by
$e = 1 - \dfrac{{{b^2}}}{{{a^2}}}$
Putting ${a^2} = 16$ and ${b^2} = \dfrac{4}{3}$ in the above formula
${e^2} = 1 - \dfrac{{\dfrac{4}{3}}}{{16}}$
$ \Rightarrow {e^2} = 1 - \dfrac{1}{{12}}$
$ \Rightarrow {e^2} = \dfrac{{11}}{{12}}$
$ \Rightarrow e = \sqrt {\dfrac{{11}}{{12}}} $
$ \Rightarrow e = \dfrac{1}{2}\sqrt {\left( {\dfrac{{11}}{3}} \right)} $
Option ‘B’ is correct
Note: Students get confusion in coefficient comparison of equations. Let ${a_1}x + {b_1}y + {c_1} = 0$ and ${a_2}x + {b_2}y + {c_2} = 0$ be two equations representing same line then:
$\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}}$
Formula Used:
1.Eccentricity of ellipse is given by
${e^2} = 1 - \dfrac{{{b^2}}}{{{a^2}}}$
Where,
$e$ is eccentricity of ellipse
$a$ is semi major axis length of ellipse
$b$is the length of semi minor axis of ellipse
2.Equation to the tangent on ellipse $\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$ at any point $\left( {{x_1},{y_1}} \right)$is given by –
$\dfrac{{x.{x_1}}}{{{a^2}}} + \dfrac{{y.{y_1}}}{{{b^2}}} = 1$
Complete step by step solution:
Given – Length of major axis =$\dfrac{4}{{\sqrt 3 }}$
$2b = \dfrac{4}{{\sqrt 3 }}$
$b = \dfrac{2}{{\sqrt 3 }}$
Now equation of tangent at a point $\left( {{x_1},{y_1}} \right)$is given can be written as
$\dfrac{{x.{x_1}}}{{{a^2}}} + \dfrac{{y.{y_1}}}{{{b^2}}} = 1$
Substituting the value of $b = \dfrac{2}{{\sqrt 3 }}$ in the above equation
$\dfrac{{x.{x_1}}}{{{a^2}}} + \dfrac{{y.{y_1}}}{{{{\left( {\dfrac{2}{{\sqrt 3 }}} \right)}^2}}} = 1$
$ \Rightarrow \dfrac{{x.{x_1}}}{{{a^2}}} + \dfrac{{3y.{y_1}}}{4} = 1$ (1)
Given equation of tangent is –
$x + 6y = 8$
$ \Rightarrow \dfrac{x}{8} + \dfrac{3}{4}y = 1$ (2)
Equation (1) and (2) represents same equations so on comparing them
$\dfrac{{{x_1}}}{{{a^2}}} = \dfrac{1}{8}$
On cross multiplying the equation –
${x_1} = \dfrac{{{a^2}}}{8}$ (3)
Also, by comparing the coefficients of Y in equation (1) and (2)
$\dfrac{{3{y_1}}}{4} = \dfrac{3}{4}$
$ \Rightarrow {y_1} = 1$
Point $\left( {{x_1},{y_1}} \right)$lies on ellipse so –
$\dfrac{{{{\left( {\dfrac{{{a^2}}}{8}} \right)}^2}}}{{{a^2}}}\,\,\,\,\, + \,\,\,\dfrac{{{{\left( 1 \right)}^2}}}{{{{\left( {\dfrac{2}{{\sqrt 3 }}} \right)}^2}}} = 1$
$ \Rightarrow \dfrac{{{a^2}}}{{64}} + \dfrac{3}{4} = 1$
$ \Rightarrow \dfrac{{{a^2}}}{{64}} = \dfrac{1}{4}$
$ \Rightarrow {a^2} = \dfrac{{64}}{4}$
$ \Rightarrow \,{a^2} = 16$
Now eccentricity of ellipse is given by
$e = 1 - \dfrac{{{b^2}}}{{{a^2}}}$
Putting ${a^2} = 16$ and ${b^2} = \dfrac{4}{3}$ in the above formula
${e^2} = 1 - \dfrac{{\dfrac{4}{3}}}{{16}}$
$ \Rightarrow {e^2} = 1 - \dfrac{1}{{12}}$
$ \Rightarrow {e^2} = \dfrac{{11}}{{12}}$
$ \Rightarrow e = \sqrt {\dfrac{{11}}{{12}}} $
$ \Rightarrow e = \dfrac{1}{2}\sqrt {\left( {\dfrac{{11}}{3}} \right)} $
Option ‘B’ is correct
Note: Students get confusion in coefficient comparison of equations. Let ${a_1}x + {b_1}y + {c_1} = 0$ and ${a_2}x + {b_2}y + {c_2} = 0$ be two equations representing same line then:
$\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}}$
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

