
If the least and the largest real values of \[\alpha \], for which the equation \[z + \alpha \left| {z - 1} \right| + 2i = 0\,\,\left( {z \in C\,{\rm{and}}\,i = \sqrt { - 1} } \right)\] has a solution, are \[p\] and \[q\] respectively. Then find the value of \[4\left( {{p^2} + {q^2}} \right)\].
Answer
216.6k+ views
Hint First we will \[z = x + iy\] in the equation \[z + \alpha \left| {z - 1} \right| + 2i = 0\] and compare the real part and imaginary part of the equation. After comparing real and imaginary, we will get two equations. From the second equation, we will find the discriminant and apply the real root condition that is \[D \ge 0\]. From the inequality, we will find the least and largest value of \[\alpha \]. Then put the value of \[p\] and \[q\] in the expression \[4\left( {{p^2} + {q^2}} \right)\].
Formula used
The discriminant of a quadratic equation \[a{x^2} + bx + c = 0\] is \[{b^2} - 4ac\].
For real roots of a quadratic equation \[a{x^2} + bx + c = 0\], the discriminant must be greater than zero.
Complete step by step solution:
Given equation is \[z + \alpha \left| {z - 1} \right| + 2i = 0\,\,\left( {z \in C\,{\rm{and}}\,i = \sqrt { - 1} } \right)\].
Now putting \[z = x + iy\] in equation \[z + \alpha \left| {z - 1} \right| + 2i = 0\]
\[ \Rightarrow x + iy + \alpha \left| {x + iy - 1} \right| + 2i = 0\] …….(1)
Calculate the magnitude of \[x + iy - 1\].
The magnitude of a complex number \[z = x + iy\] is \[\left| z \right| = \sqrt {{x^2} + {y^2}} \].
The magnitude of \[x + iy - 1\] is \[\sqrt {{{\left( {x - 1} \right)}^2} + {y^2}} \].
Now putting \[\left| {x + iy - 1} \right| = \sqrt {{{\left( {x - 1} \right)}^2} + {y^2}} \] in equation (1)
\[ \Rightarrow x + iy + \alpha \sqrt {{{\left( {x - 1} \right)}^2} + {y^2}} + 2i = 0\]
Combine real part and complex
\[ \Rightarrow \left( {x + \alpha \sqrt {{{\left( {x - 1} \right)}^2} + {y^2}} } \right) + \left( {2 + y} \right)i = 0\]
Compare real and imaginary number
\[x + \alpha \sqrt {{{\left( {x - 1} \right)}^2} + {y^2}} = 0\] ….(2)
and \[\left( {2 + y} \right) = 0\] …..(3)
From equation (3) calculate the value of \[y\]
\[y = - 2\]
Rewrite the equation (2)
\[x = - \alpha \sqrt {{{\left( {x - 1} \right)}^2} + {y^2}} \]
Squaring both sides of the equation
\[{x^2} = {\left( { - \alpha \sqrt {{{\left( {x - 1} \right)}^2} + {y^2}} } \right)^2}\]
\[ \Rightarrow {x^2} = {\alpha ^2}\left( {{{\left( {x - 1} \right)}^2} + {y^2}} \right)\]
Apply the formula \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\]
\[ \Rightarrow {x^2} = {\alpha ^2}\left( {{x^2} - 2x + 1 + {y^2}} \right)\]
\[ \Rightarrow 0 = {\alpha ^2}\left( {{x^2} - 2x + 1 + {y^2}} \right) - {x^2}\]
\[ \Rightarrow \left( {{\alpha ^2} - 1} \right){x^2} - 2x{\alpha ^2} + \left( {1 + {y^2}} \right){\alpha ^2} = 0\]
Compare \[\left( {{\alpha ^2} - 1} \right){x^2} - 2x{\alpha ^2} + \left( {1 + {y^2}} \right){\alpha ^2} = 0\] with \[a{x^2} + bx + c = 0\].
\[a = {\alpha ^2} - 1,b = - 2{\alpha ^2},c = \left( {1 + {y^2}} \right){\alpha ^2}\]
Since \[\left( {{\alpha ^2} - 1} \right){x^2} - 2x{\alpha ^2} + \left( {1 + {y^2}} \right){\alpha ^2} = 0\] has real roots, so the discriminant of the equation must be greater than or equal to zero.
\[{b^2} - 4ac \ge 0\]
Putting \[a = {\alpha ^2} - 1,b = - 2{\alpha ^2},c = \left( {1 + {y^2}} \right){\alpha ^2}\]
\[{\left( { - 2{\alpha ^2}} \right)^2} - 4\left( {{\alpha ^2} - 1} \right)\left( {1 + {y^2}} \right){\alpha ^2} \ge 0\]
\[ \Rightarrow {\alpha ^2}\left[ {4{\alpha ^2} - 4\left( {{\alpha ^2} - 1} \right)\left( {1 + {y^2}} \right)} \right] \ge 0\]
\[ \Rightarrow {\alpha ^2}\left[ {4{\alpha ^2} - \left( {4{\alpha ^2} - 4} \right)\left( {1 + {y^2}} \right)} \right] \ge 0\]
\[ \Rightarrow {\alpha ^2}\left[ {4{\alpha ^2} - \left( {4{\alpha ^2} - 4 + 4{\alpha ^2}{y^2} - 4{y^2}} \right)} \right] \ge 0\]
\[ \Rightarrow {\alpha ^2}\left[ {4{\alpha ^2} - 4{\alpha ^2} + 4 - 4{\alpha ^2}{y^2} + 4{y^2}} \right] \ge 0\]
\[ \Rightarrow {\alpha ^2}\left[ {4 - 4{\alpha ^2}{y^2} + 4{y^2}} \right] \ge 0\]
Putting \[y = - 2\] in the above equation
\[ \Rightarrow {\alpha ^2}\left[ {4 - 4{\alpha ^2}{{\left( { - 2} \right)}^2} + 4{{\left( { - 2} \right)}^2}} \right] \ge 0\]
\[ \Rightarrow {\alpha ^2}\left[ {4 - 16{\alpha ^2} + 16} \right] \ge 0\]
\[ \Rightarrow {\alpha ^2}\left[ { - 16{\alpha ^2} + 20} \right] \ge 0\]
A square of real number must be greater than zero.
\[ \Rightarrow {\alpha ^2} \ge 0\] and \[ - 16{\alpha ^2} + 20 \ge 0\]
Now solving the inequality \[ - 16{\alpha ^2} + 20 \ge 0\]
\[ - 16{\alpha ^2} + 20 \ge 0\]
Multiply -1 both sides of the inequality
\[16{\alpha ^2} - 20 \le 0\]
Divide both sides by 16
\[ \Rightarrow {\alpha ^2} - \dfrac{5}{4} \le 0\]
\[ \Rightarrow {\alpha ^2} - {\left( {\dfrac{{\sqrt 5 }}{2}} \right)^2} \le 0\]
\[ \Rightarrow \alpha - \left( {\dfrac{{\sqrt 5 }}{2}} \right) \le 0\] or \[\alpha + \left( {\dfrac{{\sqrt 5 }}{2}} \right) \ge 0\]
\[ \Rightarrow \alpha \le \left( {\dfrac{{\sqrt 5 }}{2}} \right)\] or \[\alpha \ge - \left( {\dfrac{{\sqrt 5 }}{2}} \right)\]
So, the solution of \[\alpha \] is \[\alpha \in \left[ { - \dfrac{{\sqrt 5 }}{2},\dfrac{{\sqrt 5 }}{2}} \right]\].
Then, the least value of \[\alpha \] is \[ - \dfrac{{\sqrt 5 }}{2}\].
The largest value of \[\alpha \] is \[\dfrac{{\sqrt 5 }}{2}\].
So, the value of \[p\] is \[ - \dfrac{{\sqrt 5 }}{2}\] and the value of \[q\] is \[\dfrac{{\sqrt 5 }}{2}\].
Putting the value of \[p\] and \[q\] in \[4\left( {{p^2} + {q^2}} \right)\].
\[4\left( {{p^2} + {q^2}} \right)\]
\[ = 4\left( {{{\left( { - \dfrac{{\sqrt 5 }}{2}} \right)}^2} + {{\left( {\dfrac{{\sqrt 5 }}{2}} \right)}^2}} \right)\]
\[ = 4\left( {\dfrac{5}{4} + \dfrac{5}{4}} \right)\]
\[ = 4 \cdot \dfrac{{10}}{4}\]
\[ = 10\]
Hence the value of \[4\left( {{p^2} + {q^2}} \right)\] is 10.
Note: Many students do mistake to solve the inequality \[{\alpha ^2} - {\left( {\dfrac{{\sqrt 5 }}{2}} \right)^2} \le 0\]. They solve it like \[\alpha - \left( {\dfrac{{\sqrt 5 }}{2}} \right) \le 0\] or \[\alpha + \left( {\dfrac{{\sqrt 5 }}{2}} \right) \le 0\] which is incorrect. The correct way is \[\alpha - \left( {\dfrac{{\sqrt 5 }}{2}} \right) \le 0\] or \[\alpha + \left( {\dfrac{{\sqrt 5 }}{2}} \right) \ge 0\].
Formula used
The discriminant of a quadratic equation \[a{x^2} + bx + c = 0\] is \[{b^2} - 4ac\].
For real roots of a quadratic equation \[a{x^2} + bx + c = 0\], the discriminant must be greater than zero.
Complete step by step solution:
Given equation is \[z + \alpha \left| {z - 1} \right| + 2i = 0\,\,\left( {z \in C\,{\rm{and}}\,i = \sqrt { - 1} } \right)\].
Now putting \[z = x + iy\] in equation \[z + \alpha \left| {z - 1} \right| + 2i = 0\]
\[ \Rightarrow x + iy + \alpha \left| {x + iy - 1} \right| + 2i = 0\] …….(1)
Calculate the magnitude of \[x + iy - 1\].
The magnitude of a complex number \[z = x + iy\] is \[\left| z \right| = \sqrt {{x^2} + {y^2}} \].
The magnitude of \[x + iy - 1\] is \[\sqrt {{{\left( {x - 1} \right)}^2} + {y^2}} \].
Now putting \[\left| {x + iy - 1} \right| = \sqrt {{{\left( {x - 1} \right)}^2} + {y^2}} \] in equation (1)
\[ \Rightarrow x + iy + \alpha \sqrt {{{\left( {x - 1} \right)}^2} + {y^2}} + 2i = 0\]
Combine real part and complex
\[ \Rightarrow \left( {x + \alpha \sqrt {{{\left( {x - 1} \right)}^2} + {y^2}} } \right) + \left( {2 + y} \right)i = 0\]
Compare real and imaginary number
\[x + \alpha \sqrt {{{\left( {x - 1} \right)}^2} + {y^2}} = 0\] ….(2)
and \[\left( {2 + y} \right) = 0\] …..(3)
From equation (3) calculate the value of \[y\]
\[y = - 2\]
Rewrite the equation (2)
\[x = - \alpha \sqrt {{{\left( {x - 1} \right)}^2} + {y^2}} \]
Squaring both sides of the equation
\[{x^2} = {\left( { - \alpha \sqrt {{{\left( {x - 1} \right)}^2} + {y^2}} } \right)^2}\]
\[ \Rightarrow {x^2} = {\alpha ^2}\left( {{{\left( {x - 1} \right)}^2} + {y^2}} \right)\]
Apply the formula \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\]
\[ \Rightarrow {x^2} = {\alpha ^2}\left( {{x^2} - 2x + 1 + {y^2}} \right)\]
\[ \Rightarrow 0 = {\alpha ^2}\left( {{x^2} - 2x + 1 + {y^2}} \right) - {x^2}\]
\[ \Rightarrow \left( {{\alpha ^2} - 1} \right){x^2} - 2x{\alpha ^2} + \left( {1 + {y^2}} \right){\alpha ^2} = 0\]
Compare \[\left( {{\alpha ^2} - 1} \right){x^2} - 2x{\alpha ^2} + \left( {1 + {y^2}} \right){\alpha ^2} = 0\] with \[a{x^2} + bx + c = 0\].
\[a = {\alpha ^2} - 1,b = - 2{\alpha ^2},c = \left( {1 + {y^2}} \right){\alpha ^2}\]
Since \[\left( {{\alpha ^2} - 1} \right){x^2} - 2x{\alpha ^2} + \left( {1 + {y^2}} \right){\alpha ^2} = 0\] has real roots, so the discriminant of the equation must be greater than or equal to zero.
\[{b^2} - 4ac \ge 0\]
Putting \[a = {\alpha ^2} - 1,b = - 2{\alpha ^2},c = \left( {1 + {y^2}} \right){\alpha ^2}\]
\[{\left( { - 2{\alpha ^2}} \right)^2} - 4\left( {{\alpha ^2} - 1} \right)\left( {1 + {y^2}} \right){\alpha ^2} \ge 0\]
\[ \Rightarrow {\alpha ^2}\left[ {4{\alpha ^2} - 4\left( {{\alpha ^2} - 1} \right)\left( {1 + {y^2}} \right)} \right] \ge 0\]
\[ \Rightarrow {\alpha ^2}\left[ {4{\alpha ^2} - \left( {4{\alpha ^2} - 4} \right)\left( {1 + {y^2}} \right)} \right] \ge 0\]
\[ \Rightarrow {\alpha ^2}\left[ {4{\alpha ^2} - \left( {4{\alpha ^2} - 4 + 4{\alpha ^2}{y^2} - 4{y^2}} \right)} \right] \ge 0\]
\[ \Rightarrow {\alpha ^2}\left[ {4{\alpha ^2} - 4{\alpha ^2} + 4 - 4{\alpha ^2}{y^2} + 4{y^2}} \right] \ge 0\]
\[ \Rightarrow {\alpha ^2}\left[ {4 - 4{\alpha ^2}{y^2} + 4{y^2}} \right] \ge 0\]
Putting \[y = - 2\] in the above equation
\[ \Rightarrow {\alpha ^2}\left[ {4 - 4{\alpha ^2}{{\left( { - 2} \right)}^2} + 4{{\left( { - 2} \right)}^2}} \right] \ge 0\]
\[ \Rightarrow {\alpha ^2}\left[ {4 - 16{\alpha ^2} + 16} \right] \ge 0\]
\[ \Rightarrow {\alpha ^2}\left[ { - 16{\alpha ^2} + 20} \right] \ge 0\]
A square of real number must be greater than zero.
\[ \Rightarrow {\alpha ^2} \ge 0\] and \[ - 16{\alpha ^2} + 20 \ge 0\]
Now solving the inequality \[ - 16{\alpha ^2} + 20 \ge 0\]
\[ - 16{\alpha ^2} + 20 \ge 0\]
Multiply -1 both sides of the inequality
\[16{\alpha ^2} - 20 \le 0\]
Divide both sides by 16
\[ \Rightarrow {\alpha ^2} - \dfrac{5}{4} \le 0\]
\[ \Rightarrow {\alpha ^2} - {\left( {\dfrac{{\sqrt 5 }}{2}} \right)^2} \le 0\]
\[ \Rightarrow \alpha - \left( {\dfrac{{\sqrt 5 }}{2}} \right) \le 0\] or \[\alpha + \left( {\dfrac{{\sqrt 5 }}{2}} \right) \ge 0\]
\[ \Rightarrow \alpha \le \left( {\dfrac{{\sqrt 5 }}{2}} \right)\] or \[\alpha \ge - \left( {\dfrac{{\sqrt 5 }}{2}} \right)\]
So, the solution of \[\alpha \] is \[\alpha \in \left[ { - \dfrac{{\sqrt 5 }}{2},\dfrac{{\sqrt 5 }}{2}} \right]\].
Then, the least value of \[\alpha \] is \[ - \dfrac{{\sqrt 5 }}{2}\].
The largest value of \[\alpha \] is \[\dfrac{{\sqrt 5 }}{2}\].
So, the value of \[p\] is \[ - \dfrac{{\sqrt 5 }}{2}\] and the value of \[q\] is \[\dfrac{{\sqrt 5 }}{2}\].
Putting the value of \[p\] and \[q\] in \[4\left( {{p^2} + {q^2}} \right)\].
\[4\left( {{p^2} + {q^2}} \right)\]
\[ = 4\left( {{{\left( { - \dfrac{{\sqrt 5 }}{2}} \right)}^2} + {{\left( {\dfrac{{\sqrt 5 }}{2}} \right)}^2}} \right)\]
\[ = 4\left( {\dfrac{5}{4} + \dfrac{5}{4}} \right)\]
\[ = 4 \cdot \dfrac{{10}}{4}\]
\[ = 10\]
Hence the value of \[4\left( {{p^2} + {q^2}} \right)\] is 10.
Note: Many students do mistake to solve the inequality \[{\alpha ^2} - {\left( {\dfrac{{\sqrt 5 }}{2}} \right)^2} \le 0\]. They solve it like \[\alpha - \left( {\dfrac{{\sqrt 5 }}{2}} \right) \le 0\] or \[\alpha + \left( {\dfrac{{\sqrt 5 }}{2}} \right) \le 0\] which is incorrect. The correct way is \[\alpha - \left( {\dfrac{{\sqrt 5 }}{2}} \right) \le 0\] or \[\alpha + \left( {\dfrac{{\sqrt 5 }}{2}} \right) \ge 0\].
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

