
If the least and the largest real values of \[\alpha \], for which the equation \[z + \alpha \left| {z - 1} \right| + 2i = 0\,\,\left( {z \in C\,{\rm{and}}\,i = \sqrt { - 1} } \right)\] has a solution, are \[p\] and \[q\] respectively. Then find the value of \[4\left( {{p^2} + {q^2}} \right)\].
Answer
232.8k+ views
Hint First we will \[z = x + iy\] in the equation \[z + \alpha \left| {z - 1} \right| + 2i = 0\] and compare the real part and imaginary part of the equation. After comparing real and imaginary, we will get two equations. From the second equation, we will find the discriminant and apply the real root condition that is \[D \ge 0\]. From the inequality, we will find the least and largest value of \[\alpha \]. Then put the value of \[p\] and \[q\] in the expression \[4\left( {{p^2} + {q^2}} \right)\].
Formula used
The discriminant of a quadratic equation \[a{x^2} + bx + c = 0\] is \[{b^2} - 4ac\].
For real roots of a quadratic equation \[a{x^2} + bx + c = 0\], the discriminant must be greater than zero.
Complete step by step solution:
Given equation is \[z + \alpha \left| {z - 1} \right| + 2i = 0\,\,\left( {z \in C\,{\rm{and}}\,i = \sqrt { - 1} } \right)\].
Now putting \[z = x + iy\] in equation \[z + \alpha \left| {z - 1} \right| + 2i = 0\]
\[ \Rightarrow x + iy + \alpha \left| {x + iy - 1} \right| + 2i = 0\] …….(1)
Calculate the magnitude of \[x + iy - 1\].
The magnitude of a complex number \[z = x + iy\] is \[\left| z \right| = \sqrt {{x^2} + {y^2}} \].
The magnitude of \[x + iy - 1\] is \[\sqrt {{{\left( {x - 1} \right)}^2} + {y^2}} \].
Now putting \[\left| {x + iy - 1} \right| = \sqrt {{{\left( {x - 1} \right)}^2} + {y^2}} \] in equation (1)
\[ \Rightarrow x + iy + \alpha \sqrt {{{\left( {x - 1} \right)}^2} + {y^2}} + 2i = 0\]
Combine real part and complex
\[ \Rightarrow \left( {x + \alpha \sqrt {{{\left( {x - 1} \right)}^2} + {y^2}} } \right) + \left( {2 + y} \right)i = 0\]
Compare real and imaginary number
\[x + \alpha \sqrt {{{\left( {x - 1} \right)}^2} + {y^2}} = 0\] ….(2)
and \[\left( {2 + y} \right) = 0\] …..(3)
From equation (3) calculate the value of \[y\]
\[y = - 2\]
Rewrite the equation (2)
\[x = - \alpha \sqrt {{{\left( {x - 1} \right)}^2} + {y^2}} \]
Squaring both sides of the equation
\[{x^2} = {\left( { - \alpha \sqrt {{{\left( {x - 1} \right)}^2} + {y^2}} } \right)^2}\]
\[ \Rightarrow {x^2} = {\alpha ^2}\left( {{{\left( {x - 1} \right)}^2} + {y^2}} \right)\]
Apply the formula \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\]
\[ \Rightarrow {x^2} = {\alpha ^2}\left( {{x^2} - 2x + 1 + {y^2}} \right)\]
\[ \Rightarrow 0 = {\alpha ^2}\left( {{x^2} - 2x + 1 + {y^2}} \right) - {x^2}\]
\[ \Rightarrow \left( {{\alpha ^2} - 1} \right){x^2} - 2x{\alpha ^2} + \left( {1 + {y^2}} \right){\alpha ^2} = 0\]
Compare \[\left( {{\alpha ^2} - 1} \right){x^2} - 2x{\alpha ^2} + \left( {1 + {y^2}} \right){\alpha ^2} = 0\] with \[a{x^2} + bx + c = 0\].
\[a = {\alpha ^2} - 1,b = - 2{\alpha ^2},c = \left( {1 + {y^2}} \right){\alpha ^2}\]
Since \[\left( {{\alpha ^2} - 1} \right){x^2} - 2x{\alpha ^2} + \left( {1 + {y^2}} \right){\alpha ^2} = 0\] has real roots, so the discriminant of the equation must be greater than or equal to zero.
\[{b^2} - 4ac \ge 0\]
Putting \[a = {\alpha ^2} - 1,b = - 2{\alpha ^2},c = \left( {1 + {y^2}} \right){\alpha ^2}\]
\[{\left( { - 2{\alpha ^2}} \right)^2} - 4\left( {{\alpha ^2} - 1} \right)\left( {1 + {y^2}} \right){\alpha ^2} \ge 0\]
\[ \Rightarrow {\alpha ^2}\left[ {4{\alpha ^2} - 4\left( {{\alpha ^2} - 1} \right)\left( {1 + {y^2}} \right)} \right] \ge 0\]
\[ \Rightarrow {\alpha ^2}\left[ {4{\alpha ^2} - \left( {4{\alpha ^2} - 4} \right)\left( {1 + {y^2}} \right)} \right] \ge 0\]
\[ \Rightarrow {\alpha ^2}\left[ {4{\alpha ^2} - \left( {4{\alpha ^2} - 4 + 4{\alpha ^2}{y^2} - 4{y^2}} \right)} \right] \ge 0\]
\[ \Rightarrow {\alpha ^2}\left[ {4{\alpha ^2} - 4{\alpha ^2} + 4 - 4{\alpha ^2}{y^2} + 4{y^2}} \right] \ge 0\]
\[ \Rightarrow {\alpha ^2}\left[ {4 - 4{\alpha ^2}{y^2} + 4{y^2}} \right] \ge 0\]
Putting \[y = - 2\] in the above equation
\[ \Rightarrow {\alpha ^2}\left[ {4 - 4{\alpha ^2}{{\left( { - 2} \right)}^2} + 4{{\left( { - 2} \right)}^2}} \right] \ge 0\]
\[ \Rightarrow {\alpha ^2}\left[ {4 - 16{\alpha ^2} + 16} \right] \ge 0\]
\[ \Rightarrow {\alpha ^2}\left[ { - 16{\alpha ^2} + 20} \right] \ge 0\]
A square of real number must be greater than zero.
\[ \Rightarrow {\alpha ^2} \ge 0\] and \[ - 16{\alpha ^2} + 20 \ge 0\]
Now solving the inequality \[ - 16{\alpha ^2} + 20 \ge 0\]
\[ - 16{\alpha ^2} + 20 \ge 0\]
Multiply -1 both sides of the inequality
\[16{\alpha ^2} - 20 \le 0\]
Divide both sides by 16
\[ \Rightarrow {\alpha ^2} - \dfrac{5}{4} \le 0\]
\[ \Rightarrow {\alpha ^2} - {\left( {\dfrac{{\sqrt 5 }}{2}} \right)^2} \le 0\]
\[ \Rightarrow \alpha - \left( {\dfrac{{\sqrt 5 }}{2}} \right) \le 0\] or \[\alpha + \left( {\dfrac{{\sqrt 5 }}{2}} \right) \ge 0\]
\[ \Rightarrow \alpha \le \left( {\dfrac{{\sqrt 5 }}{2}} \right)\] or \[\alpha \ge - \left( {\dfrac{{\sqrt 5 }}{2}} \right)\]
So, the solution of \[\alpha \] is \[\alpha \in \left[ { - \dfrac{{\sqrt 5 }}{2},\dfrac{{\sqrt 5 }}{2}} \right]\].
Then, the least value of \[\alpha \] is \[ - \dfrac{{\sqrt 5 }}{2}\].
The largest value of \[\alpha \] is \[\dfrac{{\sqrt 5 }}{2}\].
So, the value of \[p\] is \[ - \dfrac{{\sqrt 5 }}{2}\] and the value of \[q\] is \[\dfrac{{\sqrt 5 }}{2}\].
Putting the value of \[p\] and \[q\] in \[4\left( {{p^2} + {q^2}} \right)\].
\[4\left( {{p^2} + {q^2}} \right)\]
\[ = 4\left( {{{\left( { - \dfrac{{\sqrt 5 }}{2}} \right)}^2} + {{\left( {\dfrac{{\sqrt 5 }}{2}} \right)}^2}} \right)\]
\[ = 4\left( {\dfrac{5}{4} + \dfrac{5}{4}} \right)\]
\[ = 4 \cdot \dfrac{{10}}{4}\]
\[ = 10\]
Hence the value of \[4\left( {{p^2} + {q^2}} \right)\] is 10.
Note: Many students do mistake to solve the inequality \[{\alpha ^2} - {\left( {\dfrac{{\sqrt 5 }}{2}} \right)^2} \le 0\]. They solve it like \[\alpha - \left( {\dfrac{{\sqrt 5 }}{2}} \right) \le 0\] or \[\alpha + \left( {\dfrac{{\sqrt 5 }}{2}} \right) \le 0\] which is incorrect. The correct way is \[\alpha - \left( {\dfrac{{\sqrt 5 }}{2}} \right) \le 0\] or \[\alpha + \left( {\dfrac{{\sqrt 5 }}{2}} \right) \ge 0\].
Formula used
The discriminant of a quadratic equation \[a{x^2} + bx + c = 0\] is \[{b^2} - 4ac\].
For real roots of a quadratic equation \[a{x^2} + bx + c = 0\], the discriminant must be greater than zero.
Complete step by step solution:
Given equation is \[z + \alpha \left| {z - 1} \right| + 2i = 0\,\,\left( {z \in C\,{\rm{and}}\,i = \sqrt { - 1} } \right)\].
Now putting \[z = x + iy\] in equation \[z + \alpha \left| {z - 1} \right| + 2i = 0\]
\[ \Rightarrow x + iy + \alpha \left| {x + iy - 1} \right| + 2i = 0\] …….(1)
Calculate the magnitude of \[x + iy - 1\].
The magnitude of a complex number \[z = x + iy\] is \[\left| z \right| = \sqrt {{x^2} + {y^2}} \].
The magnitude of \[x + iy - 1\] is \[\sqrt {{{\left( {x - 1} \right)}^2} + {y^2}} \].
Now putting \[\left| {x + iy - 1} \right| = \sqrt {{{\left( {x - 1} \right)}^2} + {y^2}} \] in equation (1)
\[ \Rightarrow x + iy + \alpha \sqrt {{{\left( {x - 1} \right)}^2} + {y^2}} + 2i = 0\]
Combine real part and complex
\[ \Rightarrow \left( {x + \alpha \sqrt {{{\left( {x - 1} \right)}^2} + {y^2}} } \right) + \left( {2 + y} \right)i = 0\]
Compare real and imaginary number
\[x + \alpha \sqrt {{{\left( {x - 1} \right)}^2} + {y^2}} = 0\] ….(2)
and \[\left( {2 + y} \right) = 0\] …..(3)
From equation (3) calculate the value of \[y\]
\[y = - 2\]
Rewrite the equation (2)
\[x = - \alpha \sqrt {{{\left( {x - 1} \right)}^2} + {y^2}} \]
Squaring both sides of the equation
\[{x^2} = {\left( { - \alpha \sqrt {{{\left( {x - 1} \right)}^2} + {y^2}} } \right)^2}\]
\[ \Rightarrow {x^2} = {\alpha ^2}\left( {{{\left( {x - 1} \right)}^2} + {y^2}} \right)\]
Apply the formula \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\]
\[ \Rightarrow {x^2} = {\alpha ^2}\left( {{x^2} - 2x + 1 + {y^2}} \right)\]
\[ \Rightarrow 0 = {\alpha ^2}\left( {{x^2} - 2x + 1 + {y^2}} \right) - {x^2}\]
\[ \Rightarrow \left( {{\alpha ^2} - 1} \right){x^2} - 2x{\alpha ^2} + \left( {1 + {y^2}} \right){\alpha ^2} = 0\]
Compare \[\left( {{\alpha ^2} - 1} \right){x^2} - 2x{\alpha ^2} + \left( {1 + {y^2}} \right){\alpha ^2} = 0\] with \[a{x^2} + bx + c = 0\].
\[a = {\alpha ^2} - 1,b = - 2{\alpha ^2},c = \left( {1 + {y^2}} \right){\alpha ^2}\]
Since \[\left( {{\alpha ^2} - 1} \right){x^2} - 2x{\alpha ^2} + \left( {1 + {y^2}} \right){\alpha ^2} = 0\] has real roots, so the discriminant of the equation must be greater than or equal to zero.
\[{b^2} - 4ac \ge 0\]
Putting \[a = {\alpha ^2} - 1,b = - 2{\alpha ^2},c = \left( {1 + {y^2}} \right){\alpha ^2}\]
\[{\left( { - 2{\alpha ^2}} \right)^2} - 4\left( {{\alpha ^2} - 1} \right)\left( {1 + {y^2}} \right){\alpha ^2} \ge 0\]
\[ \Rightarrow {\alpha ^2}\left[ {4{\alpha ^2} - 4\left( {{\alpha ^2} - 1} \right)\left( {1 + {y^2}} \right)} \right] \ge 0\]
\[ \Rightarrow {\alpha ^2}\left[ {4{\alpha ^2} - \left( {4{\alpha ^2} - 4} \right)\left( {1 + {y^2}} \right)} \right] \ge 0\]
\[ \Rightarrow {\alpha ^2}\left[ {4{\alpha ^2} - \left( {4{\alpha ^2} - 4 + 4{\alpha ^2}{y^2} - 4{y^2}} \right)} \right] \ge 0\]
\[ \Rightarrow {\alpha ^2}\left[ {4{\alpha ^2} - 4{\alpha ^2} + 4 - 4{\alpha ^2}{y^2} + 4{y^2}} \right] \ge 0\]
\[ \Rightarrow {\alpha ^2}\left[ {4 - 4{\alpha ^2}{y^2} + 4{y^2}} \right] \ge 0\]
Putting \[y = - 2\] in the above equation
\[ \Rightarrow {\alpha ^2}\left[ {4 - 4{\alpha ^2}{{\left( { - 2} \right)}^2} + 4{{\left( { - 2} \right)}^2}} \right] \ge 0\]
\[ \Rightarrow {\alpha ^2}\left[ {4 - 16{\alpha ^2} + 16} \right] \ge 0\]
\[ \Rightarrow {\alpha ^2}\left[ { - 16{\alpha ^2} + 20} \right] \ge 0\]
A square of real number must be greater than zero.
\[ \Rightarrow {\alpha ^2} \ge 0\] and \[ - 16{\alpha ^2} + 20 \ge 0\]
Now solving the inequality \[ - 16{\alpha ^2} + 20 \ge 0\]
\[ - 16{\alpha ^2} + 20 \ge 0\]
Multiply -1 both sides of the inequality
\[16{\alpha ^2} - 20 \le 0\]
Divide both sides by 16
\[ \Rightarrow {\alpha ^2} - \dfrac{5}{4} \le 0\]
\[ \Rightarrow {\alpha ^2} - {\left( {\dfrac{{\sqrt 5 }}{2}} \right)^2} \le 0\]
\[ \Rightarrow \alpha - \left( {\dfrac{{\sqrt 5 }}{2}} \right) \le 0\] or \[\alpha + \left( {\dfrac{{\sqrt 5 }}{2}} \right) \ge 0\]
\[ \Rightarrow \alpha \le \left( {\dfrac{{\sqrt 5 }}{2}} \right)\] or \[\alpha \ge - \left( {\dfrac{{\sqrt 5 }}{2}} \right)\]
So, the solution of \[\alpha \] is \[\alpha \in \left[ { - \dfrac{{\sqrt 5 }}{2},\dfrac{{\sqrt 5 }}{2}} \right]\].
Then, the least value of \[\alpha \] is \[ - \dfrac{{\sqrt 5 }}{2}\].
The largest value of \[\alpha \] is \[\dfrac{{\sqrt 5 }}{2}\].
So, the value of \[p\] is \[ - \dfrac{{\sqrt 5 }}{2}\] and the value of \[q\] is \[\dfrac{{\sqrt 5 }}{2}\].
Putting the value of \[p\] and \[q\] in \[4\left( {{p^2} + {q^2}} \right)\].
\[4\left( {{p^2} + {q^2}} \right)\]
\[ = 4\left( {{{\left( { - \dfrac{{\sqrt 5 }}{2}} \right)}^2} + {{\left( {\dfrac{{\sqrt 5 }}{2}} \right)}^2}} \right)\]
\[ = 4\left( {\dfrac{5}{4} + \dfrac{5}{4}} \right)\]
\[ = 4 \cdot \dfrac{{10}}{4}\]
\[ = 10\]
Hence the value of \[4\left( {{p^2} + {q^2}} \right)\] is 10.
Note: Many students do mistake to solve the inequality \[{\alpha ^2} - {\left( {\dfrac{{\sqrt 5 }}{2}} \right)^2} \le 0\]. They solve it like \[\alpha - \left( {\dfrac{{\sqrt 5 }}{2}} \right) \le 0\] or \[\alpha + \left( {\dfrac{{\sqrt 5 }}{2}} \right) \le 0\] which is incorrect. The correct way is \[\alpha - \left( {\dfrac{{\sqrt 5 }}{2}} \right) \le 0\] or \[\alpha + \left( {\dfrac{{\sqrt 5 }}{2}} \right) \ge 0\].
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

