
If the least and the largest real values of \[\alpha \], for which the equation \[z + \alpha \left| {z - 1} \right| + 2i = 0\,\,\left( {z \in C\,{\rm{and}}\,i = \sqrt { - 1} } \right)\] has a solution, are \[p\] and \[q\] respectively. Then find the value of \[4\left( {{p^2} + {q^2}} \right)\].
Answer
164.4k+ views
Hint First we will \[z = x + iy\] in the equation \[z + \alpha \left| {z - 1} \right| + 2i = 0\] and compare the real part and imaginary part of the equation. After comparing real and imaginary, we will get two equations. From the second equation, we will find the discriminant and apply the real root condition that is \[D \ge 0\]. From the inequality, we will find the least and largest value of \[\alpha \]. Then put the value of \[p\] and \[q\] in the expression \[4\left( {{p^2} + {q^2}} \right)\].
Formula used
The discriminant of a quadratic equation \[a{x^2} + bx + c = 0\] is \[{b^2} - 4ac\].
For real roots of a quadratic equation \[a{x^2} + bx + c = 0\], the discriminant must be greater than zero.
Complete step by step solution:
Given equation is \[z + \alpha \left| {z - 1} \right| + 2i = 0\,\,\left( {z \in C\,{\rm{and}}\,i = \sqrt { - 1} } \right)\].
Now putting \[z = x + iy\] in equation \[z + \alpha \left| {z - 1} \right| + 2i = 0\]
\[ \Rightarrow x + iy + \alpha \left| {x + iy - 1} \right| + 2i = 0\] …….(1)
Calculate the magnitude of \[x + iy - 1\].
The magnitude of a complex number \[z = x + iy\] is \[\left| z \right| = \sqrt {{x^2} + {y^2}} \].
The magnitude of \[x + iy - 1\] is \[\sqrt {{{\left( {x - 1} \right)}^2} + {y^2}} \].
Now putting \[\left| {x + iy - 1} \right| = \sqrt {{{\left( {x - 1} \right)}^2} + {y^2}} \] in equation (1)
\[ \Rightarrow x + iy + \alpha \sqrt {{{\left( {x - 1} \right)}^2} + {y^2}} + 2i = 0\]
Combine real part and complex
\[ \Rightarrow \left( {x + \alpha \sqrt {{{\left( {x - 1} \right)}^2} + {y^2}} } \right) + \left( {2 + y} \right)i = 0\]
Compare real and imaginary number
\[x + \alpha \sqrt {{{\left( {x - 1} \right)}^2} + {y^2}} = 0\] ….(2)
and \[\left( {2 + y} \right) = 0\] …..(3)
From equation (3) calculate the value of \[y\]
\[y = - 2\]
Rewrite the equation (2)
\[x = - \alpha \sqrt {{{\left( {x - 1} \right)}^2} + {y^2}} \]
Squaring both sides of the equation
\[{x^2} = {\left( { - \alpha \sqrt {{{\left( {x - 1} \right)}^2} + {y^2}} } \right)^2}\]
\[ \Rightarrow {x^2} = {\alpha ^2}\left( {{{\left( {x - 1} \right)}^2} + {y^2}} \right)\]
Apply the formula \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\]
\[ \Rightarrow {x^2} = {\alpha ^2}\left( {{x^2} - 2x + 1 + {y^2}} \right)\]
\[ \Rightarrow 0 = {\alpha ^2}\left( {{x^2} - 2x + 1 + {y^2}} \right) - {x^2}\]
\[ \Rightarrow \left( {{\alpha ^2} - 1} \right){x^2} - 2x{\alpha ^2} + \left( {1 + {y^2}} \right){\alpha ^2} = 0\]
Compare \[\left( {{\alpha ^2} - 1} \right){x^2} - 2x{\alpha ^2} + \left( {1 + {y^2}} \right){\alpha ^2} = 0\] with \[a{x^2} + bx + c = 0\].
\[a = {\alpha ^2} - 1,b = - 2{\alpha ^2},c = \left( {1 + {y^2}} \right){\alpha ^2}\]
Since \[\left( {{\alpha ^2} - 1} \right){x^2} - 2x{\alpha ^2} + \left( {1 + {y^2}} \right){\alpha ^2} = 0\] has real roots, so the discriminant of the equation must be greater than or equal to zero.
\[{b^2} - 4ac \ge 0\]
Putting \[a = {\alpha ^2} - 1,b = - 2{\alpha ^2},c = \left( {1 + {y^2}} \right){\alpha ^2}\]
\[{\left( { - 2{\alpha ^2}} \right)^2} - 4\left( {{\alpha ^2} - 1} \right)\left( {1 + {y^2}} \right){\alpha ^2} \ge 0\]
\[ \Rightarrow {\alpha ^2}\left[ {4{\alpha ^2} - 4\left( {{\alpha ^2} - 1} \right)\left( {1 + {y^2}} \right)} \right] \ge 0\]
\[ \Rightarrow {\alpha ^2}\left[ {4{\alpha ^2} - \left( {4{\alpha ^2} - 4} \right)\left( {1 + {y^2}} \right)} \right] \ge 0\]
\[ \Rightarrow {\alpha ^2}\left[ {4{\alpha ^2} - \left( {4{\alpha ^2} - 4 + 4{\alpha ^2}{y^2} - 4{y^2}} \right)} \right] \ge 0\]
\[ \Rightarrow {\alpha ^2}\left[ {4{\alpha ^2} - 4{\alpha ^2} + 4 - 4{\alpha ^2}{y^2} + 4{y^2}} \right] \ge 0\]
\[ \Rightarrow {\alpha ^2}\left[ {4 - 4{\alpha ^2}{y^2} + 4{y^2}} \right] \ge 0\]
Putting \[y = - 2\] in the above equation
\[ \Rightarrow {\alpha ^2}\left[ {4 - 4{\alpha ^2}{{\left( { - 2} \right)}^2} + 4{{\left( { - 2} \right)}^2}} \right] \ge 0\]
\[ \Rightarrow {\alpha ^2}\left[ {4 - 16{\alpha ^2} + 16} \right] \ge 0\]
\[ \Rightarrow {\alpha ^2}\left[ { - 16{\alpha ^2} + 20} \right] \ge 0\]
A square of real number must be greater than zero.
\[ \Rightarrow {\alpha ^2} \ge 0\] and \[ - 16{\alpha ^2} + 20 \ge 0\]
Now solving the inequality \[ - 16{\alpha ^2} + 20 \ge 0\]
\[ - 16{\alpha ^2} + 20 \ge 0\]
Multiply -1 both sides of the inequality
\[16{\alpha ^2} - 20 \le 0\]
Divide both sides by 16
\[ \Rightarrow {\alpha ^2} - \dfrac{5}{4} \le 0\]
\[ \Rightarrow {\alpha ^2} - {\left( {\dfrac{{\sqrt 5 }}{2}} \right)^2} \le 0\]
\[ \Rightarrow \alpha - \left( {\dfrac{{\sqrt 5 }}{2}} \right) \le 0\] or \[\alpha + \left( {\dfrac{{\sqrt 5 }}{2}} \right) \ge 0\]
\[ \Rightarrow \alpha \le \left( {\dfrac{{\sqrt 5 }}{2}} \right)\] or \[\alpha \ge - \left( {\dfrac{{\sqrt 5 }}{2}} \right)\]
So, the solution of \[\alpha \] is \[\alpha \in \left[ { - \dfrac{{\sqrt 5 }}{2},\dfrac{{\sqrt 5 }}{2}} \right]\].
Then, the least value of \[\alpha \] is \[ - \dfrac{{\sqrt 5 }}{2}\].
The largest value of \[\alpha \] is \[\dfrac{{\sqrt 5 }}{2}\].
So, the value of \[p\] is \[ - \dfrac{{\sqrt 5 }}{2}\] and the value of \[q\] is \[\dfrac{{\sqrt 5 }}{2}\].
Putting the value of \[p\] and \[q\] in \[4\left( {{p^2} + {q^2}} \right)\].
\[4\left( {{p^2} + {q^2}} \right)\]
\[ = 4\left( {{{\left( { - \dfrac{{\sqrt 5 }}{2}} \right)}^2} + {{\left( {\dfrac{{\sqrt 5 }}{2}} \right)}^2}} \right)\]
\[ = 4\left( {\dfrac{5}{4} + \dfrac{5}{4}} \right)\]
\[ = 4 \cdot \dfrac{{10}}{4}\]
\[ = 10\]
Hence the value of \[4\left( {{p^2} + {q^2}} \right)\] is 10.
Note: Many students do mistake to solve the inequality \[{\alpha ^2} - {\left( {\dfrac{{\sqrt 5 }}{2}} \right)^2} \le 0\]. They solve it like \[\alpha - \left( {\dfrac{{\sqrt 5 }}{2}} \right) \le 0\] or \[\alpha + \left( {\dfrac{{\sqrt 5 }}{2}} \right) \le 0\] which is incorrect. The correct way is \[\alpha - \left( {\dfrac{{\sqrt 5 }}{2}} \right) \le 0\] or \[\alpha + \left( {\dfrac{{\sqrt 5 }}{2}} \right) \ge 0\].
Formula used
The discriminant of a quadratic equation \[a{x^2} + bx + c = 0\] is \[{b^2} - 4ac\].
For real roots of a quadratic equation \[a{x^2} + bx + c = 0\], the discriminant must be greater than zero.
Complete step by step solution:
Given equation is \[z + \alpha \left| {z - 1} \right| + 2i = 0\,\,\left( {z \in C\,{\rm{and}}\,i = \sqrt { - 1} } \right)\].
Now putting \[z = x + iy\] in equation \[z + \alpha \left| {z - 1} \right| + 2i = 0\]
\[ \Rightarrow x + iy + \alpha \left| {x + iy - 1} \right| + 2i = 0\] …….(1)
Calculate the magnitude of \[x + iy - 1\].
The magnitude of a complex number \[z = x + iy\] is \[\left| z \right| = \sqrt {{x^2} + {y^2}} \].
The magnitude of \[x + iy - 1\] is \[\sqrt {{{\left( {x - 1} \right)}^2} + {y^2}} \].
Now putting \[\left| {x + iy - 1} \right| = \sqrt {{{\left( {x - 1} \right)}^2} + {y^2}} \] in equation (1)
\[ \Rightarrow x + iy + \alpha \sqrt {{{\left( {x - 1} \right)}^2} + {y^2}} + 2i = 0\]
Combine real part and complex
\[ \Rightarrow \left( {x + \alpha \sqrt {{{\left( {x - 1} \right)}^2} + {y^2}} } \right) + \left( {2 + y} \right)i = 0\]
Compare real and imaginary number
\[x + \alpha \sqrt {{{\left( {x - 1} \right)}^2} + {y^2}} = 0\] ….(2)
and \[\left( {2 + y} \right) = 0\] …..(3)
From equation (3) calculate the value of \[y\]
\[y = - 2\]
Rewrite the equation (2)
\[x = - \alpha \sqrt {{{\left( {x - 1} \right)}^2} + {y^2}} \]
Squaring both sides of the equation
\[{x^2} = {\left( { - \alpha \sqrt {{{\left( {x - 1} \right)}^2} + {y^2}} } \right)^2}\]
\[ \Rightarrow {x^2} = {\alpha ^2}\left( {{{\left( {x - 1} \right)}^2} + {y^2}} \right)\]
Apply the formula \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\]
\[ \Rightarrow {x^2} = {\alpha ^2}\left( {{x^2} - 2x + 1 + {y^2}} \right)\]
\[ \Rightarrow 0 = {\alpha ^2}\left( {{x^2} - 2x + 1 + {y^2}} \right) - {x^2}\]
\[ \Rightarrow \left( {{\alpha ^2} - 1} \right){x^2} - 2x{\alpha ^2} + \left( {1 + {y^2}} \right){\alpha ^2} = 0\]
Compare \[\left( {{\alpha ^2} - 1} \right){x^2} - 2x{\alpha ^2} + \left( {1 + {y^2}} \right){\alpha ^2} = 0\] with \[a{x^2} + bx + c = 0\].
\[a = {\alpha ^2} - 1,b = - 2{\alpha ^2},c = \left( {1 + {y^2}} \right){\alpha ^2}\]
Since \[\left( {{\alpha ^2} - 1} \right){x^2} - 2x{\alpha ^2} + \left( {1 + {y^2}} \right){\alpha ^2} = 0\] has real roots, so the discriminant of the equation must be greater than or equal to zero.
\[{b^2} - 4ac \ge 0\]
Putting \[a = {\alpha ^2} - 1,b = - 2{\alpha ^2},c = \left( {1 + {y^2}} \right){\alpha ^2}\]
\[{\left( { - 2{\alpha ^2}} \right)^2} - 4\left( {{\alpha ^2} - 1} \right)\left( {1 + {y^2}} \right){\alpha ^2} \ge 0\]
\[ \Rightarrow {\alpha ^2}\left[ {4{\alpha ^2} - 4\left( {{\alpha ^2} - 1} \right)\left( {1 + {y^2}} \right)} \right] \ge 0\]
\[ \Rightarrow {\alpha ^2}\left[ {4{\alpha ^2} - \left( {4{\alpha ^2} - 4} \right)\left( {1 + {y^2}} \right)} \right] \ge 0\]
\[ \Rightarrow {\alpha ^2}\left[ {4{\alpha ^2} - \left( {4{\alpha ^2} - 4 + 4{\alpha ^2}{y^2} - 4{y^2}} \right)} \right] \ge 0\]
\[ \Rightarrow {\alpha ^2}\left[ {4{\alpha ^2} - 4{\alpha ^2} + 4 - 4{\alpha ^2}{y^2} + 4{y^2}} \right] \ge 0\]
\[ \Rightarrow {\alpha ^2}\left[ {4 - 4{\alpha ^2}{y^2} + 4{y^2}} \right] \ge 0\]
Putting \[y = - 2\] in the above equation
\[ \Rightarrow {\alpha ^2}\left[ {4 - 4{\alpha ^2}{{\left( { - 2} \right)}^2} + 4{{\left( { - 2} \right)}^2}} \right] \ge 0\]
\[ \Rightarrow {\alpha ^2}\left[ {4 - 16{\alpha ^2} + 16} \right] \ge 0\]
\[ \Rightarrow {\alpha ^2}\left[ { - 16{\alpha ^2} + 20} \right] \ge 0\]
A square of real number must be greater than zero.
\[ \Rightarrow {\alpha ^2} \ge 0\] and \[ - 16{\alpha ^2} + 20 \ge 0\]
Now solving the inequality \[ - 16{\alpha ^2} + 20 \ge 0\]
\[ - 16{\alpha ^2} + 20 \ge 0\]
Multiply -1 both sides of the inequality
\[16{\alpha ^2} - 20 \le 0\]
Divide both sides by 16
\[ \Rightarrow {\alpha ^2} - \dfrac{5}{4} \le 0\]
\[ \Rightarrow {\alpha ^2} - {\left( {\dfrac{{\sqrt 5 }}{2}} \right)^2} \le 0\]
\[ \Rightarrow \alpha - \left( {\dfrac{{\sqrt 5 }}{2}} \right) \le 0\] or \[\alpha + \left( {\dfrac{{\sqrt 5 }}{2}} \right) \ge 0\]
\[ \Rightarrow \alpha \le \left( {\dfrac{{\sqrt 5 }}{2}} \right)\] or \[\alpha \ge - \left( {\dfrac{{\sqrt 5 }}{2}} \right)\]
So, the solution of \[\alpha \] is \[\alpha \in \left[ { - \dfrac{{\sqrt 5 }}{2},\dfrac{{\sqrt 5 }}{2}} \right]\].
Then, the least value of \[\alpha \] is \[ - \dfrac{{\sqrt 5 }}{2}\].
The largest value of \[\alpha \] is \[\dfrac{{\sqrt 5 }}{2}\].
So, the value of \[p\] is \[ - \dfrac{{\sqrt 5 }}{2}\] and the value of \[q\] is \[\dfrac{{\sqrt 5 }}{2}\].
Putting the value of \[p\] and \[q\] in \[4\left( {{p^2} + {q^2}} \right)\].
\[4\left( {{p^2} + {q^2}} \right)\]
\[ = 4\left( {{{\left( { - \dfrac{{\sqrt 5 }}{2}} \right)}^2} + {{\left( {\dfrac{{\sqrt 5 }}{2}} \right)}^2}} \right)\]
\[ = 4\left( {\dfrac{5}{4} + \dfrac{5}{4}} \right)\]
\[ = 4 \cdot \dfrac{{10}}{4}\]
\[ = 10\]
Hence the value of \[4\left( {{p^2} + {q^2}} \right)\] is 10.
Note: Many students do mistake to solve the inequality \[{\alpha ^2} - {\left( {\dfrac{{\sqrt 5 }}{2}} \right)^2} \le 0\]. They solve it like \[\alpha - \left( {\dfrac{{\sqrt 5 }}{2}} \right) \le 0\] or \[\alpha + \left( {\dfrac{{\sqrt 5 }}{2}} \right) \le 0\] which is incorrect. The correct way is \[\alpha - \left( {\dfrac{{\sqrt 5 }}{2}} \right) \le 0\] or \[\alpha + \left( {\dfrac{{\sqrt 5 }}{2}} \right) \ge 0\].
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
